Quick Start

Borland ®

Delphi 4
for Windows 95 and Windows NT

Inprise Corporation, 100 Enterprise Way
Scotts Valley, CA 95066-3249

Refer to the file DEPLOY.TXT located in the root directory of your Delphi 4 product for a complete list of files that you
can distribute in accordance with the No-Nonsense License Statement.

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

CoPYRIGHT © 1998 Inprise Corporation. All rights reserved. All Inprise and Borland products are trademarks or
registered trademarks of Inprise Corporation. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

HDA1340WW21000 1EORS598
9899000102-987654321
D4

Contents

Chapter 1
Introduction 1-1
Whatis Delphi? 1-1
Where to find information 1-1
OnlineHelp. 1-2
Printed documentation 1-4
Inprise developer support services. 1-4
Inprise Website. 1-4
Manual conventions. 1-4
Chapter 2
A tour of the environment 2-1
Starting Delphi. 2-1
Placing componentsonaform. 2-2
Changing component appearance and
behavior. L. 2-3
Navigating among events. 2-4
Editingcode 2-4
Browsing with the editor 2-5
Navigating within your project. 2-5
Navigating within your code 2-6
Getting help whilecoding. 2-7
Organizing the environment 2-8
Debugging applications. 2-9
Exploring databases 2-11
Storing objects as templates. 2-11
Project managementtool 2-13
Handy pop-upmenus. 2-14
Toolbars. 2-14
Gettinghelp, 2-15
Chapter 3
Your first application—a brief
tutorial 31
Starting a new application 3-1
Setting property values 3-3
Adding objects totheform 3-3
Accessing adatabase 3-5
Adding support for a toolbar and amenu . . . 3-7
Addingamenu. 3-8
Addingatoolbar. 3-10
Displaying animage. 3-11
Finaltouches 3-12

Hooking up aneventhandler 3-13

Chapter 4
Customizing the environment 4-1
Organizing your workarea 4-1
Organizing tools. 4-2
Organizing menus and toolbars 4-4
Setting projectoptions 4-5
Setting options for all new projects 4-6
Restoring Delphi’s original default
settings 4-6
Creating projectdefaults. 4-6
Specifying a default project 4-6
Displaying a default form 4-7
Setting tool preferences. 4-7
Customizing the Code editor 4-8
Customizing the Component palette 4-8
Rearranging the Component palette 4-9
Adding components to Delphi. 4-10
Installing component packages 4-10
Adding ActiveX controls 4-10
Creating component templates 4-11
Customizing DelphiHelp 4-11
Chapter 5
Programming with Delphi 51
Delphi development environment 5-1
Designing applications. 5-2
Usingthe VCL. 5-2
Creating the application user interface5-4
Using components 5-4
Changing component behavior 5-5
Designingmenus 5-5
Developing applications 5-6
Creating Windows GUI applications 5-6
Creating packagesand DLLs. 5-7
Handling exceptions 5-7
Writing database applications. 5-8
Connecting to databases 5-8
Using databasetools 5-8
Browsing databases 5-9
Storing data information 5-9
Editing existing database tables 5-9
Configuring databases 5-10

Understanding database application architecture
5-10

Developing distributed applications. 5-11 Using MTS with Delphi. 5-13

Developing CORBA applications. 5-12 Creating and editing type libraries 5-14
Developing distributed applications Deploying applications. 5-14
using COMand MTS. 5-12 Building custom components 5-15
Creating COM applications with
wizards 513 Index -1

1.1 Online Help documentation 1-2 41 Projectoptions 4-5
12 Typefaces. 1-4 51 Delphiproductversions. 5-2
21 CodelInsighttools. 2-7

ii

Introduction

Welcome to Delphi! This Quick Start provides an overview of the Delphi
development environment and features to get you started using the product right
away. It also tells you where to look for details on using the product and the many
tools that are available from within the Delphi environment.

What is Delphi?

Delphi is an object-oriented, visual programming environment for rapid application
development (RAD). You can use it for developing all kinds of applications from
general-purpose utilities to sophisticated data access programs, including client/
server applications. Using Delphi, you can create highly efficient Microsoft
Windows 95, Windows 98, and Windows NT applications with a minimum of
manual coding.

Delphi provides a comprehensive library of reusable components and a suite of RAD
design tools, including application and form templates, and programming wizards.
These tools simplify application prototyping and development and shorten
development time.

When you start Delphi, you are immediately placed within the visual programming
environment. It is within this environment that Delphi provides all the tools you
need to design, develop, test, and debug applications.

Where to find information

Extensive information on Delphi is available in a variety of forms:

* Online Help

¢ Printed documentation

¢ Inprise developer support services
¢ Inprise Web site

Introduction 1-1

Where to find information

Refer to What’s New in Delphi? in online Help and the Inprise Web site for information
about new features for this release.

Online Help

You can use online Help to get detailed information about using Delphi while using
the product. Referring to Help is a convenient way to learn about the extensive
language features, programming tasks, compiler options, and other development

tools.

Delphi provides detailed online reference information for numerous reusable
components such as the Visual Component Library and Win32 APIs. Online
reference is the fastest way to get information on language syntax and component
properties, methods, and events as you are developing applications.

Delphi includes the following Help files:

Table 1.1
Help file

Using Delphi
(Delphi4.hlp)

Visual Component Library
Reference
(Del4vcl.hlp)

Programming with Delphi
(Del4prog.hlp)

Developing Database
Applications
(Del4dbd.hlp)

Developing Distributed
Applications
(Del4dap.hlp)

Creating Custom Components
(Del4cw.hlp)

1-2 Quick Start

Online Help documentation

What's it about?

Describes how to use the Delphi development
environment and explains fundamental concepts
such as components, properties, methods, and
events, and working with forms, projects, and
packages.

Presents detailed reference on Delphi objects,
components, global routines, types, and variables.
Individual entries for objects and components
include the unit where each is declared, show the
position in the hierarchys, list all available
properties and methods, and include relevant
examples.

Provides programming details for Delphi
developers using components available in the VCL
and illustrates the implementation of common
programming tasks such as handling exceptions,
creating toolbars, cool bars, drag-and-drop
controls, and using graphics.

Discusses issues for developers who are designing
single and multi-tiered database applications
including background on database architecture,
datasets, fields, tables, queries, and decision
support.

Supplies information on using Delphi for creating
distributed applications including information on
CORBA, DCOM, MTS, HTTP, and Sockets.

Provides information for developers who want to
write customized components including how to
design, build, test, and install the component into
the Delphi environment.

Who's it for?

New Delphi
developers, people
with questions about
the IDE

All Delphi developers

All Delphi developers
for detailed
programming
examples

Database developers

Developers writing
Client/server
applications

Developers who are
implementing
components

Table 1.1
Help file

Developing COM-based
Applications
(Del4com.hlp)

Object Pascal Reference
(Del4op.hlp)

Customizing Help
(OpenHelp.hlp)

What's New in Delphi?
(Del4new .hlp)

Where to find information

Online Help documentation (continued)

What's it about?

Describes the concepts and skills necessary for
building distributed applications, including COM
objects, ActiveX controls and automation objects.

Describes writing COM objects for the MTS
runtime environment. Covers Delphi’s Type
Library Editor, which provides an easy way to
modify the automatically generated type library.

Provides a formal definition of the Object Pascal
language as used in Delphi and includes topics
such as file I/O, string manipulation, program
control, data types, and language extensions.

Explains how to use OpenHelp to configure your
Windows Help (.HLP) files to include or remove
Help files from the Help system.

Introduces the new features and enhancements to
Delphi for the current release and includes links to
detailed information.

Who's it for?

Developers writing
client/server
applications

Developers who need
Object Pascal
language details

Developers wanting
to customize the

Delphi Help system

Developers who
upgraded to this

release

You will also find Help on additional products that are supplied with some versions
of Delphi, such as the following;:

¢ Borland Database Engine Help

¢ Borland Database Engine Administrator Help

Database Explorer Help

PVCS Version Manager Help

Local SQL Help

SQL Builder Help

WinSight User’s Guide Image Editor Help
Win32 Help files

Help Author’s Guide (Help Workshop)
NEWT Intranet ActiveX Help
QuickReport Help

TeeChart Help

InterBase Help

Help for miscellaneous components (FastNet Time, DayTime, Echo, Finger, HTTP,
NNTP, POP3, Powersock, SMTP, UDP, URL Encode/Decode, UUprocessor,
Stream and Msg components)

The Help files are located in the Help directory under the main Delphi directory.

Introduction 1-3

Manual conventions

Printed documentation

This Quick Start is meant to get you started with using Delphi. For information about
ordering additional printed documentation, refer to the Inprise Web site at
www.inprise.com.

Inprise developer support services

Inprise also offers many support options if you need more information. To find out
about Inprise’s developer support services, see Inprise Online at
http:/ /www.inprise.com/devsupport, or call Inprise Assist at (800) 523-7070.

Inprise Web site

Additional Delphi Technical Information documents and Frequently Asked
Questions (FAQs) are available through Inprise Online at www.inprise.com. The
Technical Information documents are white papers that focus on particular aspects of
Delphi.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a useful
bibliography of additional books published on Delphi.

Manual conventions

This manual uses the typefaces described in Table 1.2 to indicate special text.

Table 1.2 Typefaces

Typeface Meaning

Monospace type Monospaced text represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent Delphi identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press ESc to exit
a menu.”

1-4 Quick Start

A tour of the environment

Starting Delphi

The best way to get familiar with Delphi is to start it up. You start Delphi the same
way you start any Windows-based application. Here are some of the common ways:

* Double-click on the Delphi icon (if you've created a shortcut).
¢ From the Windows Start menu, choose Programs | Delphi 4.0.

You'll see some of the major tools provided in the Delphi development environment:

[ds Lo Jearch Yes Presd Qen Compesse Doishass Tooh Swkgreapa eip WL NS = PaletteOfready-
Do E B g Sesie |soome |wnl: Imlwlmmnlmwlmmlm_'ll_—made c_omponents
A0S cme pFE AR s H@-" 5@ to use in your
application.
Fropmte || Com | = b a . —
cion) = sttt it Code editor for viewing
e a: e R ! and editing code.
h‘O@C.m “. :..: o L =] L]
| Diiccs |pdeaTorig (|| 2
Bareican Sk : -
BaveShis brSusable iy 'I_
. ki ——Ablank form on
oty gl L= which to start
Cux cOwrace designing the Ul for
[Tt your application.
Bee | wlaa An application can
Cockias P include many
[T m- forms.
Ermblnd "\-\.l = 1o 0 Eadied \
An Object Inspector that's
used to change an object's A Code Explorer that shows you an overview of
properties and select event your code and lets you navigate quickly.

handlers.

The environment is called the IDE (integrated development environment). Within
the IDE, all your programming tools are within easy reach—you can manage

A tour of the environment 2-1

Placing components on a form

projects, develop applications, write program code, search databases, debug,
compile, and browse through Delphi objects without leaving the IDE.

Placing components on a form

To build a Delphi application interface, you place components on a form, set their
properties, and code their event handlers.

Many components are provided on the Component palette, grouped by function.

fai Delphi 4 - Project1

File Edit Search Yiew Project Bun Component Database Tools Workgroups Help | 0 o

DEl & 2 | Stendad lAdditionaI] win32 |

tem] Internet} DataAl:l:ess] Diata. Comro\sl Decision Cube] CRepor 4| »

FIHI D s’ |k AN E R)e S T [E 2

)

Click a component on the Component palette.

Wiew Projes Flen Comgonent [
Propc Marager Chi+AiE]
kg et Irrigzes i F1l
fbgrmant Fakets

Code Explower

o Tagale FomiUnd g pech by name

etz
F Fimis
T Dk i ¥ s e
3 l
Hesw Edit Wiadoes | TDalaicunce
Toolhecs | ToaeT ke
)| TDECha
g2 | T DEChekBes

=

(i

Or, choose a
component from an
alphabetical list.

Then click where you want to place it on the form.

[E)]

™ DeshFoal Pudzal

™ ChechEcal Q
I ChackBical b2 |

You can also rearrange the palette and
add new pages. Choose Environment
Options, then the Palette page.

Tools Wodgosps Help

Desdbasiggar Digdons
Beepostony

Configuns Tooks
Fackage Colecion Editor
Irveecya Excioe

Ciatnbass Deskiop

2-2 Quick Start

o e You can install new components on
HIEE S the Component palette.

Cemponant [isiad gris
e Zormp el

Impert Aok Corfrol

- k) g pSCk S0 |I-d T et [BREETN |

Lt M e
Snanch pa 4 FitfiLb §EE L PN HT0F el

Eockage e v |

Pockoge gasopmon

Changing component appearance and behavior

Changing component appearance and behavior

You can easily customize the way a component appears and behaves in your
application by using the Object Inspector. When a component is selected on the form,
its properties and events are displayed in the Object Inspector:

PE You can select an object on the form by clicking on it...
PR ainn
Propurtas |Everss | ... or use this drop-down list to select an
Eildcds belafTofligh =] object. Here, Button2 is selected, and its
Aol Falsp . .
oo properties are displayed.
+Capgeaints [TERwCoraves
Curear criisinuk
sy A Selecta property
DeagCsrsoe crorag and change its nereT
Dusgfind delvng value in the right
DClazgidpaie dmbdarassl column. ™ ChackBxd
I'—'u_|-5::fh" e - I ChackBad
5 . - ™ ClackBad
e | Click an ellipsis to open :
Hrd a dialog box where you
Lh:"““ I-'Sl‘j'h can change several
C [151 Hel e e .
e properties at once.
PrenifiDlid Trse
PamrtFenl Tres
PapntShorad Tren
Popuskdaru =

Double-click a plus sign to open a detail list.

Many of the properties have standard values, such as colors, True or False, or
positions. For properties that have binary values like True or False, you can click on
the word to change the value to its opposite. Other properties have associated
property editors to set more complicated sets of properties. When you click on a

property value, you'll see an ellipsis.

Bl Double-click here to
‘ozition poDES|gned h h lue f
FrintScale roportlonal change the value from F BE
Scaled True to False. ont
ShowHint False ‘ Font style: Size:
Tan n |Hegu|ar 2 |
Lapn Larel Click any ellipsis to i 10 Eanee]
olar clTeal - H MewCenturySchibk 12
d'ds_ltﬂa)]ﬁ a ?hroferty % News Gathic MT j 11
eattor 1or that property. OCR A Extended 14
prop ty Palating 24 Help
\L ' Playbil =l |
Enabled 1 ru:h j/‘/ﬁs Sarmple
+Font [TFant] = i
[Stikeout
FullR eoaint True =l =
™ Underling CEEbE=
Lolor:
Click on the down M Elack 5 | Sl
arrow to see the default Western ||
property values. Select
the one you want.

A tour of the environment 2-3

Editing code

Navigating among events

Y — = Click the Events tab in the Object Inspector to navigate
Eveene | < among events that each component can handle. Here,

oy Button2 is selected, and its type is displayed: TButton.
| oncece | =

: 1]

OrDwagThe —Select an event from the

OrEndDock drop-down list.

OrEndDeag

OnEnter

EEDM Or, double-click in the

DrdieyPracics value column, and

Ormdip Delphi generates the

OrtdowiaDo skeleton code for the

E::x:m event handler, ready for

T your input.

DRSOy

Editing code

As you visually design the user interface for your application, Delphi generates the
underlying Pascal code. When you select and modify the properties of forms and
components, the results of those changes are automatically reflected in the project or
the form file.

You can also add code to the source files directly using the built-in Code editor.

W Dglghs 4 - Fregeet]

Fle Ed Feech Yew Proeol Fun Coweorneri [mcbese [ooh wiwhpoups Hep

T FE S IS PR EINE T

Gaandd Sckional |'aed? | Suuters | intmren] Dot fecsm | Dt Convabi | Doeninion Cien | DFbocacet | D6akorm | 10 | Gharmeden | ettt | MIDAE |

e SRR et EEH+RA S

it ~ . .| Notice that
T Tmnit Taicir .| components added to
the form are reflected
interfane in the code.
L L]}
Wiimus, Tessages, yourtrs, EokheerAMANMNNMNNAE NN RN RN =
Delphi- | !
Lype
generated Trorml = clawe|TFom)
Code. ChackBoxl: TCheckBox:

ChackBoxi: TCheckSox:
CrackBzx¥: TCheckSnox:
Fazall: TPmzal:
Boreonl: THoooon:
Borecond @ Thoooon:
private

[Private declagations |

puklic

[Pablic declargizony |

1 JR—

T M Modified [T

Click on any element of the Object Pascal language
or VCL, and press F1 to get help.

2-4 Quick Start

Editing code

The Delphi Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. The contents of the form, all its properties, and its components and their
properties can be viewed and edited as text in the Code editor by selecting the View
as Text option in the form designer’s context menu.

The Delphi code generation and property streaming systems are completely open to
inspection. The source code for everything that is included in your final EXE—all of
the VCL objects, RTL sources, all of the Delphi project files can be viewed and edited
in the Code editor.

Browsing with the editor

The Code editor has forward and back buttons like you've seen on a Web browser.
You can use them to move to various places that you were working in your code.

By clicking the left arrow, you can move to the last place you were working in your
code. You can return to the place you were looking at by clicking on the right arrow.

I% Use the editor like a Web
:‘ browser.

Thiliera | Saitae Tham |

WAL TREGQL|
anterfacs

wrw
Fizdows, Eszmapur: Syrlcils, Clarsaw, Grephica, Comcrole. Forme,
Ixrirrle, Svolcris;

= Press Ctrland point to any

TTerasdforefees = clama |TFores)] identiﬁer. The cursor turns intO
a hand, and the identifier turns
blue and is underlined.

Click to display the definition of
the identifier.

After navigating, you can move
forward and back to various

Srevedure BelsesismsartiuaPuin: CRASIT! TR3LAN]? locations where you were in
o sk, e g e
E 0 I

Navigating within your project

Delphi makes it easy to move around within a project. You can display the Project
Manager by choosing View | Project Manager. From the Project Manager, you can
view any form or unit contained in the project by simply clicking on it. See “Project
management tool” on page 2-13 for more about the Project Manager.

X B8
‘_}|..-..-.,- a1

o)
= g main
H Wewnpas
Bl Cusipavmaiindobia i
-

H ik

D Prosgrem File s Y8-orband Dol phefy Bin'y L L peoj dp

A tour of the environment 2-5

Editing code

Navigating within your code

When the code for a unit is displayed in the Code editor, you can use the Code
Explorer to see a structured table of contents for the code. The Code Explorer
diagrams all the types, classes, properties, methods, global variables, and global
routines defined in your unit. It also shows the other units listed in the uses clause.

2-6

ThEan - =
=] TThead EarFams(TFor2) |
= Privmte TThreadSortForn = elass {TFoom} =
¥ ThreackFusnieg: inie EtactEtn: TButton:
& Pandnmirsdmnys RubbledortBox: TPaintBox;
"J"“I ara(Eardar FelectionSoctBox: TEaintBox:
=0 Publc o 11 - K —
 FrintanBac TR T[T s e i i
6 Publised Labell: TLabel:
9 SwnEn THal Bevell: TBevel)
¥ BshbieSori Beval: TBevel)
¥ SelucioaBo Hevall: TBewvel)
GuickS pfion: TPaim Lab=lZ: TLabel:
¥ Latsll TLabi % TLabel;
[Frr - N e BubblesortBoR Palnt [Sender: T
§ Bl ?ﬁ"'"'" onfortBoxFaint (Sender:
: :‘I:_flf T:Jl:;:: procaduse JuickiorcBol]
4 La-.:-clgl TLat procedurs FormCreats |S=ndec: T
s BihbinSorBeoPaint procadure Starchinlick (Sender: Tobject]
& SelocinaSorBoPsr private
s s ckS pdBosPand S Thesadafanning: Intager:
i FomiCiouk{Sandar s procedurs Fandonizshrray=: =
LT — LI T :

T8 b Moditesd Inson

Select an item in the Code
Explorer and the cursor moves to
that item’s implementation in the
Code editor.

Move the cursor in the Code
editor and the highlight moves to
the appropriate item in the Code
Explorer.

| The Code Explorer shows a bird’s
eye view of your code.

To search for a class, property,
method, variable, or routine, just
type its name.

Within the Code editor, you can also move between the declaration of a procedure to
its implementation and back again. Type Ctrl+Shift+t (or Ctrl+Shift+1).

Put your cursor near the wnd,

declaration of a procedure and sl .

press Ctrl+Shift+1 to jump to and; i

its implementation. Press o . o
Ctrl+Shift+1 again to move 81 Yt

back.

Quick Start

Editing code

Getting help while coding

While you are writing code, Delphi provides various tools to help. You need to
configure these tools using Tools | Environment options.

To get help with writing classes in the interface section of a unit, you can use the
class completion tool. You just type the class declaration then press Ctri+Shift+C.
Delphi automatically adds private read and write specifiers for properties that need
them and generates skeleton code in the implementation section for all the class’s
methods. Configure class completion on the Explorer page of the Environment
Options.

You can get more detailed help while completing the code. Code Insight displays
context sensitive pop-up windows while you're editing in the Code editor.

Bie Edi Ssmsch ew Exieci Bsa Comsoreni Dwisbess Tack Wowbgoeps Help F "0 & o

Mo i T = iln . .
DGR 9 | St skl Wi | e | k| Dk Accw | Doms Conkols| DesmemCb =12 || 1 (i codle completion, as

gnd cwe P asur s w-—="E | § soon as you type the dot,
Ctyecimpeaze K1) =[5[=] Delphiautomatically displays
E csor TEon e = === apop-up box that lists the
Frogsban | Evoras | Qar proceduse Trossl.nuttonlcliceizandss: 2| valid properties, methods,
daw °(1 civrd and events for the class.
Dikdoge | belaaToFig) : !

=l S e and; fropene aewm Thnsio 2| Selectanitem on the list and
Loniecivn |[TERICHA -aj"' - el _ e ! press Enterto add it to the
Cugd il ‘_‘5 s o o code.

Dwimi Fdpa & G i L1

Oeaglomor cilinag =

Dsaghasd chCveg 5 Furn

Disagidosie dritdaresl M Dumicay

Erashiad T 5 Emilas

=*oni [TFary dverobls

gl 1 BT

i Con | B o] [o] =]

it

- [=

I Ry T |1

2811 Medied Insar

After dropping a component onto the form, ———— == |
double-click it to display the code that was
generated.

Code Insight includes several features that you configure from the Environment
Options dialog box. Select Tools | Environment Options and select the Code Insight
page. These options are on by default when you install Delphi. Code Insight tools are
described in Table 2.1.

Table2.1 Code Insight tools

Tool How it works

Code completion Enter a class name then a period to display a list of properties, methods,
and events appropriate to the class; enter an assignment statement and
press Ctri+space to display a valid list of arguments for the variable; type a
procedure, function, or method call to bring up a list of arguments.

Code parameters Type a method call and an open parenthesis to display the syntax for the
arguments to the method.

Code templates Press Ctrl+J to list common programming statements that you can insert
into your code. You can set up as many templates as you need.

A tour of the environment 2-7

Organizing the environment

Table 2.1 Code Insight tools (continued)

Tool How it works

Tooltip symbol insight While editing code, point to any identifier to show the source of its
definition.

Tooltip expression While paused during debugging, point to a variable to display its

evaluation current value.

For more information...

Search for “class completion,” “Code Insight,” and “code completion” in the Help

index.

Organizing the environment

Delphi has configurable windows that you can dock to other windows in the IDE.
Docking lets you make full and efficient use of your screen space as you work on
your project. From the View menu, you can bring up any window and then dock it
directly onto the Code editor for use while coding and debugging. The docked
window attaches to the editor window.

Rlnanafad. Lnafen] o o |SoriThte e
B SonThekep. 57 ! =l
B Thionpas 64
BThEnnpns a4 L Mo xocedure TThr=adiortForn . FornCr=ats {Sendat:
B ThSonpe=: 78 begin
Randonlzedrrays !
!
Bl ccoduke TThE=ad3ortPorn . Starthonslick (8end
beieg Ly
Fandonlzefrrayal
ThesadaRunning = 3:
with TRubbleSort.Create |Bubbleforthon, EutJ
onTekminate = ThreadDons:
with Tislactionfort.Crsats felectiondorths
onTeeminats = Thrsadhons
with ToulckSort.Creats(Quicksorthoy, ouick
onTeeminats = Thesadbons:
§tartBin.Enabled (= Falas:
iy ! -
; ; o
f S | [LETR] /J\

|
You can dock tool windows onto other
windows. Here the Breakpoint list is docked
onto the Code editor.

2-8 Quick Start

Debugging applications

You can also dock two or more windows next to each other to maintain fast one-step

access to the tools.

. 1 [| Dock two windows next to each
= [Privase ! L other by dropping a window
¥ FEio TRimirdfioe @ ProgoGroug] onto another when a vertical
: e = I thiddamnn s rectangle is displayed.
HML—e = T - .
» FA Intmger & '?.é-:.-..-u. Here the Code Explorer is
» FE Inmger T ThissdSorFam docked alongside the Project
» Pt ineger 1 SofThas pe Manager.
? F.lirteger
s [ntimmiSwep
50 Protescisd
da Sortfomr & sy of Infmger
d iz Seempdd, BLL) Ineger)
d Eromcute
=50 Public
_da Crzste (Bioee TPt var S
i I t DeAPragram Filles)Baoslamd

Debugging applications

Delphi provides an integrated debugger that helps you locate and fix errors in your

applications and dynamic

link libraries (DLLs). The integrated debugger lets you

control program execution, monitor variable values and items in data structures, and
modify data values while debugging.

Choose Tools|Debugger
Options and set debugging
options on all four pages.

Choose any of the debugging
commands from the Run menu and
some are also on the toolbar.

Run button
Debugger buttons

Fll B

Bua Compomnl Qembase Took Yor

Bun Fi
Em AT

= L] m

=]

B e b M Sorsce Lt Thel=F7
Funta Cusan F4

n
Dl it b iny CilsF7
& Watch C=F5
Sk Preskpan L1

[kebmgper UpSsanes

Cenaml |E«.1‘||ILA:-g| Larcpage Exvaphions | 05 Expaphions
Gk
I Mep 022 Keyatokas an
™ Edsik bufkeda reschon by O min
™ Inspeciom gy oniop
[Pemmange exhior kocal menu on nn

o [T TR | [r) 1k I [
Fomr | Applcadan Comde | Lk
o umTsb P sy

¥ Optinzaton ™ Eianga chacking

¥ dibgred reooed bekde P 10 cheaking

I Stack lraraz [Crearbien chacking D]
I~ Persgs safe FOOY

Sl g F¥ Codnr) vk

¥ |t g ke dabiecy

Choose Project|
Options, select the r [nind | Ceed | b |
Compiler page and
check Debug
Information

A tour of the environment 2-9

Debugging applications

After you compile your program with debug information, you can begin a
debugging session by running your program from the IDE. Many debugging views
are available to you including a Breakpoint List, Call Stack, Watch List, Local
Variables, Thread Status, Modules, CPU view, and an event log. Display them by
choosing View | Debug Windows.

You can view the values of variables, functions on the call stack, and program output
to check that the area of code you are examining is performing as designed. You can
also step through your code line by line examining the state of the program, viewing
the program output, and modifying program data values.
Lots of information is available to

you while debugging. Choose View| ——

Debug Windows and select the ones Breabpoint Lt | Tread Status | Call Stack | watch Lis | Mool | Evert Leg |

you want. ;Eﬂmﬁumus :;-enenur. Concilion E“,
bl] n e

You can dock many of the B Th3or pas B4 a

debugging views together overlaying g:g:; pes if; g

each other. Click the tabs to see the F i

different views.

Delphi also supports multiprocess and remote debugging of distributed applications
from either the client or server. You turn on remote debugging from the Run |
Parameters | Remote page by checking “Debug Project on remote machine” and then
checking “Include remote debug symbols” on the Project | Options Linker page.

[P —— | Omcorea/Condsanae | vewaars | Cmdazsn |
. Faves | s b | [T [ETH
W We Lrdsn indpat
BanotaFan | =l =08 7 Ut 0Lk
Fnaie bgst | = © Bopaes ™ Vot Q1 B
I Publicy ™ s 4 - Dhgsor gy
[a—— Dt r
[gl :
EsE sadOLL apéaae Earany s
I Cerarsia creacks spplicsion vy miach ama 1
F Debeg project on remols machine r ..'Elﬁll.'.r.'dlblﬂ'ﬁ - —
/T_I-'nw;w--\.h-\h:la'uﬁﬂr o
waB e e T
wa || ok el | mon | =

[wacapias
E4E Dubripions. |

You can use remote debugging to
test and debug distributed) T Lielz
applications together as if they were
one application.

You can set remote run parameters
if you include remote debug symbols
on the Linker options page.

For more information...
See “Using Delphi” in the Help contents or search for “debugging” in the Help index.

2-10 Quick Start

Exploring databases

Exploring databases

The SQL Explorer (or Database Explorer in the Standard and Professional editions of
Delphi) lets you work directly with a remote database server during application
development. For example, you can create, delete, or restructure tables, or import
constraints while you are developing a database application.

Chject [iclioneny Edil Wi Opiors Help
\' -
Ko o T T - ™ | Choose Database|
Al Db A Ases Contants ol biolfudy Exp|ore to disp|ay the
Crmimbmesn]I:Iu:iunary‘l Defrabon E‘-HF |E|-IE|""'I:||_I EXpIOLEr. YOUhCan Se.e
= 1 Dalaber as - Spemcies Mo Catmgory [Common_Hiome =] ;A;b(fec ange the data in a
= {4 DADEMOE | am Tiggarish Clown Tiicggtih '
2 a“;;‘:“ o [] 90030 Snopp Fled Empecce And you can query a
i = 1 OS] Wi s Giaml biec Winsso database direcﬂy.
w [chansdbl L] 3007 Ang BlueAng
[couningcl 1 qmlE] Cod Lunartald Fockend
w1 [carsiody. db 1 8] Scopionizh Fretish
o [customard 1 901 [0 Bumaddyiiah Omata Butktldish
= [l empioyaa 90110 Ehark Swel Sheek
+ M esanis db .
+ M hokngs i IELEL™, Bt Fisy
" w1 M irwkisive dhl | rlJ . .
G ineems b bbolife. db,
For more information...

See “Developing Database Applications” in the Help contents or search for
“databases” in the Help index.

Storing objects as templates

The Object Repository contains many application objects such as forms, data
modules, wizards, and DLLs that simplify development. Choose File | New to
display the Object Repository when you are about to begin a new project. Check the
repository first to see if there is an object that resembles one you want to create and
start from there.

You can easily reuse objects that Delphi provides and objects that you build by
accessing them in the Object Repository. Reusing objects lets you build families of
applications with common user interfaces and functionality. Building on an existing
foundation also reduces development time and improves quality.

The Object Repository also provides a central location for application development
tools that all members of a development team can access over a network. Therefore,
you can develop forms that you can use in more than one application and save them
in the Object Repository. Or, in a shared programming environment, you can
develop a standard set of forms for other developers to use within their applications.

A tour of the environment 2-11

Storing objects as templates

You can use the Tools | Repository command to add objects to the Object Repository.
Those objects are then available using the File | New command, which opens the New
Items dialog box:

Delphi includes 2~ e - |
centralized repository Mew | Ackusit| Muier | ThrdDiema | Fasms | Dimiog | Projects | Dimte kx4 | +]
for storing and — .
reusing data models, B [@ % ﬂ' ml
business rules, B GeichFis Cosponesi DeisModus CLL
objects, and forms.
Many of the pages +
include wizards that - % E O) é
simplify development Form Fackage Frojec Coug Fapoi a._:l::;jJDLL
of that type of
application or object. = :
» ! B B 5 ™ .
Sandos Sandca Tiasi Theaad Objact Undi
A0 phcatis
-]
I T e
Ok I Caancal | Halp

Projacts | Diais Modelas | Eaiiss |
Hew | Ackesd | Muber | irenecgi Foms | Disings
W = o = E
EEEEERE Cu~listbow OwickPepod OwickPepod CuickPepor
Lot L=t Wby Ctml
Tombokmsd
P To add your own
pages, right-click in
the New Items dialog
box and choose
Properties from the
menu. This opens
the Object
~ Copy © hest © Us | ; .
Repository dialog
Lol box.
] 3 i i
You can inherit, | el |
reference, or copy an

existing object.

You can also access the many objects and wizards that Delphi provides on the tabbed
pages. The number and type of objects available to you is dependent on the version
of Delphi that you purchased.

For more information...

See “Using Delphi” in the Help contents or search for “Object Repository” in the
Help index. Also choose File | New and browse around in the Object Repository to
see the kinds of business wizards, form and dialog templates that you can use as a
starting point for your application.

2-12 Quick Start

Project management tool

Project management tool

Use the Project Manager to keep track of and access the form and unit files that make
up a Delphi application. Choose View | Project Manager to see a list of files in your
application and easily navigate among files.

You can use the Project Manager to combine related projects into a single project
group. Project groups allow you to organize and work on interdependent projects
such as separate tiers in a multi-tiered application or DLLs and executables that work

together.
Delete selected project You can add or delete files or change their order.
Add new Activate You can group related projects.
project selected project You can control the order in which the files or related projects
are compiled.
Project Manager
& X
£ ProjectGroup]
S
= Froject2.exe
=5 Unitt

B) Unitl pas | Double-click a source file to display the file

<\
= Form1 \ in the editor.

— Double-click a form to display it.

D:\Program Files' Ugteon: LA

Right-click with a project selected
Vi Soeica to modify or build your project.

Cinss Choose Project|Build All Projects
Bemose Project to build all projects in a project
Bwild Sooper group at once.

Bugiirt L

v Toolbar
Sty B

Docksbla

The Project Manager shows you a high-level view of the projects contained in a
project group, and of the form, unit files, resource, object, and library files contained
in the project file. You can use the Project Manager to open, add, save, and remove
project files. You can also use the Project Manager to access default project settings.

The Project Manager is a useful tool if you share files among different projects
because it lets you quickly find each file in the project. It can also be used for other
common project management tasks such as package management and resource (.RC)
management.

A tour of the environment 2-13

Handy pop-up menus

Handy pop-up menus

You can right-click on objects and on most Delphi tools to view a menu of commands
appropriate to the context you are working in. These are called context menus.

Aboul tha Blug Asgeifisl

abitsnis arcund boudars, cos, coral -]

hachiyes an oA nas in Ghal mw walnis.

Ewimi ok Alion To Grid
Brirg Te Erond

r,_ﬁf.'ﬁ Sand Ta Back il Here a database memo

Jlata i J object is selected. Right-

e I click on the memo object

oft Align..) .
Jitiim ire to display this menu.

. 11 Edbilys gonp

, Tab Qrder.
Hifge Aggellish i ;:i:;,m e

|catagon |Epeias Mama [angh jca Jlang @ T Baposiony.
'_-.ﬁrnr s Tead |

ﬂ‘“"il"'sh Fomacanius neussche]

41 |

Toolbars

The Delphi toolbars, located in the main window, contain buttons that provide quick
access to common operations and commands (Open, Save, Run, and so on).

Standard toolbar View toolbar
Remove
Open file from '
V Toggl
NJeW Save prOJect prOJect uﬁg fo(;%wg/fmt Cut Paste
1
,-b | J |
|o# > Lk |m;# IJ@ﬂ@mwm
Open Save all Addflleto |
i Vlew New Copy
project forms form
Debug toolbar
List of projects
you can run Lrt%ce
| |
IR

|
Run Pause Step
over

] o You can also use the right-click menu to hide the toolbars.
To find out what any button does, point to it for a moment To display a toolbar if it's not showing, choose
and a hint is displayed. View|Toolbars and check the one you want.

2-14 Quick Start

Getting help

Getting help

Delphi’s online Help provides extensive documentation on Delphi.

Cowerss | waies_| Fing_ |

\

Chick § book, snd then chok T

b, gach 5% ke

" Pagammng wih Deizh

W Curoabapes; detalais app oo
W ol py Tt Conmponents

" Derswlapane COb-tavesd spsboslion
i anl Comgerand Library Fadureres
: Oyt Feconl Frlosance

2 Figgramimer's Feferencas
W L Halp
W Cairniaeg Hal

\

~

Choose Help|Contents to open the
master contents for the Delphi Help
system. Browse through topics by
category.

I~ Click Index or Find to search for
specific keywords.

— Click on a book to see what's in it.

Here are some of the many ways you can display help:

ET T - |
Huan? TBuan Press
Fropeses | Evmris |
Ackon =
BDwdode bdlefToRg
Cmacel Falus
Cmpticn Eurton
sZpastminty | (TSeCorah
Cumer creiautl
Colout Fralss
Cmgluser olmg
Dmgfind dklimg
Cmgliode d L1
Ernbled Trus
Haight]

Helponied 0 =

= Dy Ve F DN T LIS T PAS

event name in the Object
Inspector to display help.

F1 on a property or

Comrole: the ativhubes of tast wittan anar in 1he contral

propuriy Font:

Desciiption

To chare e b & e Rk, apacity & new TRant abjet. Ta madkly &
forrl, changa 1ha wakie of the Color, Height, Man, Filch, Eiza, o
Styler of thie TFom it

TFank:

Footbit | Prcisciz |
Ly
Trerml

= clamr|TFocm)
LiscEouyi

Press F1 on a property,
event, method, function,

Labsliz Tlakal;
Featlakel: Tiekesl:
pracsdure Forslyeans (e
procaders LiscPasiClick(!
procedure Dravltemitontc
dcars) Toumayhrawizate)
prucaderes LiscloxiMessscd
var Height: Integes):

el AFANE GRS |

Rl

Gmser] joaem [Bt [o [o [o |

— procedure, or type in the

TListBox

Unil
sldedrta

[lamcti pil o

TLisifes srplemenin {be perens ebaser rl sy i
TCusombmibore TLisiBea publehes moany of ihe propestes
raEnted Fom TCussomiLsi B, bl dos ot inissdace sy

T Dy e

Lk TLisiBua {0 dvpley @ sorollable I of fer s Tl usens
o wlect, aed or dukita oo apeciaioad il boed s ese of ber
dewcarcert clasass of TCesiermbisiBan a1 darve Fom &

TLiSIBEs o wvappad Fii a Wadiows bl BEs conlil

Code editor to display help.

A tour of the environment

2-15

Getting help

You can display help on any part of the development environment including menu

items, dialog boxes, windows, screens, toolbars, and components.

Bl Edt Seowh M | Project Aun Conponend Dobbaie Took Workpoups Hep

Do i | @ | i e Prowel.

FILE S
m|!m|lm|nﬁﬁm]umn‘]"

Rl | = F o B B e)

: ﬂ Assrcewhars Progct -
Jedd o Fimpoaioey. .
W EaRATE
Press F1 on any menu T —
command, dialog box, or Dpes s Targel .

window to display help on e

that item. \!w\
Fud Frome u
| Sriscchedk Poect |

Cormpd td Prigoh
Eugd Al Procix:

- [helae Helg MI=1E3

Fin Edt EBodkpah Opion: Hup

Hks Lopics| | B]

Project|Syntax Check praject

[heaza Project|Syntax Chack project b compile the modules
of your progesci bl nel fink 1ham Thie provides you with &
means for checking your code far compile hme smars
Fyaudonot have 3 prajct apen when you cheass (his
cammand, anly the cumant module wil com pils

Uising ProjecifS ynias Check project is faster iban uzing
PrapetiCampis projec] tacause Delphi doa s not have b
craste 1he chict code for the unis

2-16 Quick Start

Your first application—a brief tutorial

The quickest way to introduce yourself to the Delphi environment is to write an
application. This tutorial guides you through the creation of a Delphi program that
lets you navigate the fields in a marine-life database table that comes with Delphi.
After you set up access to the table, you'll write an event handler that opens the
standard File Save dialog box. This allows you to write information from the
database table to a file.

Starting a new application

Before beginning any new application, create a folder to hold the application source
files. This way, you don’t mix your application source files with other types of files,
and a unique folder lets you easily track and maintain all the files contained in this
application.

1 Create the folder MySource in the Projects directory off the main Delphi directory
to hold the project files you'll create with this simple application.

2 Open a new project.

Each application is represented in Delphi by a project. When you start Delphi, it
opens a blank project by default. If another project is already open, choose File |
New Application to create a new project.

Whenever you open a new project, Delphi automatically creates the following
files:

* Projectl.DPR: a project file.
e Unitl.PAS: a source file associated with the main project form.

e Unitl.DFM: a resource file that stores the properties and objects you place in the
current form. (If you create another form, you’ll see another .DFM file.)

Your first application-a brief tutorial 3-1

Starting a new application

3 Choose File | Save All to save your files to disk. When the Save dialog appears,
navigate to your MySource folder, and save the Delphi files using their default file
names. (You can also use the Delphi Save As dialog box to create the new
MySource directory.)

In addition to the files already mentioned, Delphi creates other files associated
with your project, as you can see by looking in your MySource directory.

In Delphi, you design the user interface for your applications using forms. Forms can
contain menus and context menus, they can be put together to make application
dialog boxes, and they can be parent or child windows. Essentially, forms are the
canvases on which you create applications.

When you open a new project, Delphi displays a graphical representation of the
project form, named Form1 by default.

i Foeerl M=
The default new form has
Maximize and Minimize buttons,
a Close button, and a Control
menu.

If you run the form now by
pressing F9, you'll see that
these buttons all work.

To return to design time, click
the X to close the form.

You place objects on forms to create user interfaces. Objects, for example, can be
standard interface controls (such as check boxes and drop-down lists), or they can be
full-featured components (such as data grids, bar charts, and editors).

In addition to the form, Delphi also displays the Object Inspector. With the Object
Inspector, you can set values for the objects you've placed on your forms.

Figure 3.1 Objector Inspector

Ctiectinzpecor | The drop-down list at the top of the Object Inspector
Farmi - TFom1 —lj— shows the currently selected object; in this case, the

Properies | Evens | objectis Form1 and its type is TForml1.

Cliariaight | 448 =|
Clenfidicth GE
Ciolor _ .

oomsmns (1Sestenet L \When a form is selected, the Object Inspector shows
P s the properties of the form.

Dk Ko b cimaciheaF o
DockSis Fale=
Dragkind clkOirag
Diraghdocks | chmkdsnusl
Enah kel T

«Font ¢ TFon
FormiSkde | fehiomal ;l

3-2 Quick Start

Setting property values

Setting property values

To design the application interface, drop objects on a form, then set the properties of
the object in the Object Inspector. Setting the properties while creating the
application interface is called making design-time settings.

¢ Set the Color property of Form1 to clAqua.

To set the Color property, find the form’s Color property in the Object Inspector
and click the drop-down list displayed to the right of the property. To change the
background color of the form to aqua, choose c/Aqua from the list of predefined
colors (see the previous figure).

Note When programming with Delphi, you should set object property values using the
Object Inspector; resist the urge to set initial property values in the source code. This
way, Delphi sets up and maintains your source code.

Adding objects to the form

The Delphi Component palette (see the following figure) includes many of the
components that you can use to create your application. Components are grouped
onto different palette pages for easy access. You select different pages of the palette
by clicking the corresponding Component palette tabs. Icons on each tab represent
the components that you can use in your application.

i Duiggha 4 - Panjecai
Eio Edi EBeamch Wiow Fmoc Bua Componant Deiskeso Took Workpuoups Help | B 8 o
DR @5 @3 | Senged | sddineal | windz | Svasem | Insman | Dais sccsss | Dais Convoks | Decision Cubs | ORapan | Disiogs 4 1*
- = e A g wuwm & Sl@as ™| F i
\ !
Component palette tabs Components
Add components to the interface by selecting the You can also double-click a component to put
component on the palette then clicking on the form the component in the middle of the form.

where you want to place it.
Using the components on the Component palette, Delphi enables you to quickly
create an interface for your application.
1 Drop a Table object onto the form.

Click the Data Access tab on the Component palette. To find the Table component,
point at a component in the Component palette for a moment; Delphi displays a
Help hint showing the name of the component, as shown here.

f@i Delphi 4 - Project]

File Edit Search Yiew Project Bun Component Database Tools “Workgroups Help E E| 'Ef

Dl &2 22| standard | Additional | Wwin32 | Systern | Internet Data Access]Data Cont 4| ¥
" == |fE e = ' =]

wl=] G EE SRS TR E

Table

Your first application-a brief tutorial 3-3

Adding objects to the form

Note

When you find the Table component, click it once to select it then click on the form
to drop the component onto the form. Delphi adds that component to the middle
of the current form. (The Table component is nonvisual so it doesn’t matter where
you put it.) Delphi names the object Tablel by default.

B Foss] M= E
Nonvisual components are shown as
icons on the screen.

When you point to an object on the
screen, Delphi displays its name —
Tablel - and the type of object it is —
TTable.

Placing a component on a form creates an object instance of that component. Once
the component is on the form, Delphi generates all the Object Pascal code
necessary to create that object in your application. Here is the great advantage of
using Delphi: you don’t have to worry about the code that creates or maintains the
objects you use in your application—Delphi does all that work for you.

Set the DatabaseName property of the table to DBDEMOS. (DBDEMOS is the alias
to a database that contains the table you're going to use.) You can select
DBDEMOS from DatabaseName property drop-down list.

il TTuds = Click the down arrow to display the
P property drop-down list.

Aok Fain - Select DBDEMOS.

AutaCairfwice | Tra
Carhardli prstar Falre
Corchants T ek Conrirs

| rclualliaf= Mirchala=1 =]

Setting this property value provides access to an existing database table.

Double-click the StatusBar component on the Win32 page of the Component
palette. This adds a status bar to the bottom of the application where you can view

help hints for menu items.

Fle Edi Festh Wew Pugsct Fin owporewd Dotnbess Took Wiokguas Hew | b - 1 % 5
D= Hd @2 & |5 banet] D soons | Dats Corkok | DecirionCube | QAspct | Diskes | Win1] Sl 28
E =L l=T T R e N s o | 2 e e I

EralucEar

3-4 Quick Start

Accessing a database

4 Set the AutoHint property of the status bar to True. The easiest way to do this is to
point and double-click on False next to AutoHint. (This will cause help hints to
display later when you point to a tool on a toolbar.)

Fmtealimn - TS -

Fropertmn | Evarts |

Actns .y

dhga il Bofiors
I AutoHni - -
EiDddrde DALSKTCREH
B vgden et it [
Calag cEnFans E
sConsirainty. [TSEeConse
Clurisdy ErDuilauk
DezgCersoe crlvag
Ciagfind dklimg
Dasgidrain | devivianissl
Ermbied Tre

+Foaw [TFanf -

Height 1

HidgCanie [o
Heri =
Lak b

Flaive Shaisler

Paras [T St ars i)
FanntBi0#A Trse
[.

e Tt hd |

Accessing a database

You're now ready to connect database controls to the database, your data source.

1 Any time, you can enlarge the size of you application’s window by dragging the
lower right corner of the form.

2 From the Data Access page of the Component palette, drop a DataSource
component on the form. The DataSource component is nonvisual so it doesn’t
matter where you put it on the form. Set its DataSet property to Tablel.

3 From the Data Controls page, choose the DBGrid component and drop it onto your
form. Position it in the lower left corner of the form above the status bar and
expand it. Your form should now resemble the following figure.

Bl Fime] M=

The Data Controls
page on the
Component palette
holds the
components that let
The Table and you control how you
DataSource . view database data in
oﬁjects r?on’tth i « | your applications.
;pg\llivc\gtigr?is € :|—| To display all the
running. fields in a database
table, use a DBGrid
component.

Your first application-a brief tutorial 3-5

Accessing a database

4 Set DBGrid properties to anchor the grid to the form:

* Click on the plus next to Constraints to expand and show its subproperties.
e Set AnchorHorz to akStretch.
o Set AnchorVert to akStretch.

Conarsy TR chiane
L

T oy TR G ki
- o "f’ﬂ:ﬂ #5azach Then set these to
Click on the plus sign e akStretch.
to display the > Wupm :
Constra/nts_ Mgl
subproperties. e =

Curs izt

5 Set the DataSource property of DBGrid to DataSourcel to access the database you
set up with the Table and DataSource objects.

Now you can finish setting up the Tablel object you previously dropped on the
form.

6 Give the Tablel object focus by clicking on it in the form, then set its properties as
follows:

e Set TableName to BIOLIFE.DB (Name is still Tablel).
e Set Active to True.

When you set the Active property to True, the grid fills with the data contained in
the BIOLIFE.DB database table. (If the grid doesn’t fill as shown in the following
figure, make sure you've correctly set the properties for all of the application
objects as explained in the previous instructions.)

Tablal: 11 ki =
Fropmins | Evaren |
As soon as you set Active to -‘E:ﬂ“ I- =
True in Tablel, a portion of i o] P
the data appears in the grid [
X X Do asehiom DEDEMDG
at design time. e
fuifal | [[Fakbab
Thu
Fhsmsd Fise
aalplad |1
m = rdmilc | indealleh]
gt Mo [simgon | Cmrncar, Pl i [Spwes Hare) 1 :::‘-lr rebaal i |
! WA Tggedak w1 gesfal o il . o i
| | ARA) F g Pl i g el SgpeF i
| | IR W (ard Mg Warrrn Cwrdean wrbih Wyrnioure
| | EURIEE o el Farue arftas rasmshun Hura Ll
| | a0 Ced Lusatml Foriood Wirma boan b Dbimcfewrs | Falin
| | A S pommcrinh Froalsh Fiweca voltam FI‘- Faa
L SN 19 il ik Dowruia Badwriphch Chamsicsion [ranceras f:;ﬁ:“ Tr —
[l =i e Sl bk Cophancpllun i Tt [t
- _r'_"l :Hﬂp :Mu
L " =

Since the DBGrid control is data aware, it displays the data in the table while you
are designing your application. The data display gives you a visual check,

3-6 Quick Start

7

Adding support for a toolbar and a menu

showing that you've correctly hooked up to the database. However, note that
being data aware doesn’t mean you can edit the data at design time. To edit the
data in the table, you'll have to run the application.

Press F9 to compile and run the project.

Adding support for a toolbar and a menu

Tip

When you run the application, Delphi opens the program in a window like the one
you designed on the form. The grid is not shown on the application interface.

Your program is a full-fledged Windows program, complete with Minimize,
Maximize, and Close buttons, and a Control menu that you can also use to close the
application. The data grid contains the values from the table, and you can scroll the
data grid to see the values in the BIOLIFE.DB table.

Even though your program contains all this, it’s still lacking a few details. Most
Windows applications implement toolbars and menus to make them easy to use.

1

6

Click the X in the upper right corner to close the application and return to the
design-time view of the form.

From the Win32 page of the Component palette, drop an ImageList onto the form.
This is another nonvisual control so it doesn’t matter where you place it. It will
include any images used by your application.

From the Standard page of the Component palette, drop an ActionList onto the
form.

An action list lets you centralize the response to user commands (actions),
providing control over menus and toolbars.

Set the action list’s Images property to ImageList1 (so you'll automatically get icons
for standard actions on the toolbar).

Double-click the action list to display the Action List editor:

fisi Editing Form1_ActionList1 Right-C”Ck on the Standard Actions
<1 designer and choose
- NewgStandard Action | [stion [ooem = [|

Categorjes: Actions:

to display the Actions " Cancel
List editor———> e
Select the actions you

want and C“Ck OK. Twfindowdrrange ‘Window

Press Ctrlto select
multiple actions.

TwindowCascade window
TwindowClose “window -
3

]

Right-click on the Action List designer and choose New Standard Action. The
Standard Actions list box is displayed.

Your first application-a brief tutorial 3-7

Adding a menu

7 Select the following actions: TDataSetFirst, TDataSetLast, TDataSetNext,
TDataSetPrior, TEditCopy, TEditCut, and TEditPaste. (Tip: Use the Ctrl key to multi-
select.) Then click OK.

You've added standard
actions that Delphi
provides along with

|~ standard images.

You'll use these on a
toolbar and menu.

8 Click on the X to close the Action List designer.

You've added standard actions. Now you’re ready to add the menu and toolbar.

Adding a menu

In this section, you're going to add a menu with three top-level items (File, Edit, and
Record). You'll add menu items to each using some of the standard actions you
added to the action list.

1 From the Standard page of the Component palette, drop a MainMenu component
onto the form. It’s nonvisual at this point so anywhere is OK.

2 Set its Images property to ImageList1.

3 Double-click the menu component to display the Menu Designer.

a. Fonm ldainbenul

You can set up your menu
using the Menu Designer.

4 Type &File to set the Caption property of the first top-level menu item and press
Enter.

3-8 Quick Start

Adding a menu

[Ctaectinspecor |
lﬁlﬂ Tkicﬂillcm When you type =.|||||'| Sdainbdenul
Properies | Evens | &File and press
yeaa =|| Enter, the top-level -
Bitmap \Pdone] File command
Evask mbMa e appears ready for
[Coption — [4Fie you to add the first
Chackad Falss menu item.

D=k Fale=

Enighkd T

Groupdnckes: |1

HalpConiesi |1

Hmi

Imiageindes |-1 =

5 Type &Save and press Enter to create a Save menu item under File.

6 Type a hyphen in the next item under the File menu and press Enter to create a

separator bar on the menu.

7 Type E&xit and press Enter to create an Exit menu item under File.

8 Click on the second top-level menu item (to the right of File) and type &Edit and

press Enter. The menu item under Edit is selected.

¢ In the Object Inspector, set its Action to Cutl and press Enter.
¢ Select the next menu item under Cut, set its Action to Copyl and press Enter.
* Select the next menu item under Copy, set its Action to Pastel and press Enter.

9 Click on the third top-level menu item (to the right of Edit) and type &Record and
press Enter. The menu item under Record is selected.

¢ In the Object Inspector, set its Action to First1 and press Enter.

10 Click on the X to close the Menu Designer.

Select the next menu item under First, set its Action to Priorl.
Select the next menu item under Prior, set its Action to Next].
Select the next menu item under Next, set its Action to Last1r.

You can then press F9 to compile and run the program to see how it looks:

Eilm Edi feord

Spaosa Mo Catsgany I'.'mn:l_ﬂlm
 m—— vy Triggasish

Spacea MaTe j

lat 1 o o T l;lzl

Close the application when you're ready to continue.

The menu bar is shown on
top and you can't see the
non-visual controls when the
program is running.

Your first application-a brief tutorial 3-9

Adding a toolbar

Adding a toolbar

1 On the Win32 page of the Component palette, double-click the toolbar to add it to
the form.

o Set the Indent property to 4.
* Set the Images property to ImageList1.
* Set ShowHint to True.

2 Add buttons to the toolbar:

e With the toolbar selected, right-click and choose New Button three times.
* Right-click and choose New Separator.
* Right-click and choose New Button four more times.

3 Assign actions to the first set of buttons:

e Select the first button and set its Action to Cutl.
* Select the second button and set its Action to Copyl.
e Select the third button and set its Action to Pastel.

4 Assign actions to the second set of buttons:

Select the first button and set its Action to First1.
Select the second button and set its Action to Priorl.
Select the third button and set its Action to Next1.
Select the last button and set its Action to Last1.

Here’s how it looks:

@reeer . HEA
L=l il et The toobar is set up and it
| e | e p — uses standard actions
provided with Delphi.
[+ | o 2y
Spaosa NuIL.'-lgﬂt' I'.'MH'IC.I_NIFH Spacea MaTe j
L] &
T - |
Lat o l;l =l

5 Press F9to compile and run the project.

Check out the toolbar. The first, next, previous, and last buttons work. To make the
cut, copy, and paste buttons work, you need to select text within a table cell. Close
the application when you're ready.

3-10 Quick Start

Displaying an image

Displaying an image

Now you can associate a picture with each record in the table.

1 From the Standard page of the Component palette, drop a Panel component onto
the top of the form below the toolbar. Delphi names this Panell by default. To

remove this caption from your running application, clear the Panell string from
the panel’s Caption property.

2 Align Panell to the top of the form by setting its Align property to alTop. Next drag
the bottom of the panel down so it fills the top portion of the form.

Fa Edd Bacond

11}5|n4ph| =

Faaell: TFannl

. - i
1 e 2y
Spooias HoCeigmy |Careracn_Hare | Seois Here =
t i3l Tagomdnh Ciosen Trggarkih Baliniosdas compaaiun
1 2010 Seepper R Empeessod Lurjaniss sebae
G005 ‘Weassa il ol s Vo i Chilran urdulsiri
: AN Aageieh (= FLES L] Porramnthae amschas
LR Lisa et FlLachsoed *haiaaa bk
1 WEHE Scoparksh Freih Fleme: ol dsr
] 1A Saderdykah Cimpip Buleriyish i don Dtk A
al | |-|_I =

3 Set the panel’s color to cIBlue.

4 From the Data Controls palette page, drop a DBImage component on top of Panell
and size it so your form resembles the one shown in the following figure by setting
its Align property to alRight and dragging out the left side of the image.

Fa Edd Bacond

i|gmf]| =

=l You can drag to set the
= % width of DBImage, or you
can set its Width property
in the Object Inspector.

DEimsgil)

OBimage | TDBRmag

o
Spooias HoCeigmy |Careracn_Hare | Seois Here =
t i3l Tagomdnh Ciosen Trggarkih Baliniosdas compaaiun
| | g Fipsd Empsor Lunjanass setan
il ol s Vo i Chilran urdulsiri
: (= FLES L] Porramnthae amschas
Lisa et FlLachsoed *haiaaa bk
1 WEHE Scoparksh Freih Fleme: ol dsr
] 1A Saderdykah Cimpip Buleriyish i don Dtk A
al | |-|_I =

Your first application-a brief tutorial 3-11

Final touches

5 Set the following DBImage properties:
e Set DataSource to DataSourcel.

e Set the DataField property to Graphic (the drop-down list shows the fields in the
Biolife table; Graphic is one of the field names).

Again, because the DBImage component is data aware, the component displays the
image of the fish in the first record of the table. This shows that you are indeed
correctly hooked up to the database.

Fi Edd Facond
1| n IR =
As soon as you set
| DataFieldto Graphic, you
| see the fish from the
database.
(S
Spooias HoCeigmy |Careracn_Hare | Seois Here -
t i3l Tagomdnh Ciosen Trggarkih Baliniosdas compaaiun
1 A1 Seeppes Rl Empsod Lirjarass setae
5| 55 i M VWi e Chadlrr ursdulshni
: (= FLES L] Pormacsnttas s schin
| | Lia et FLfdar oo "o b houk
| | WEHE Scoparksh Freih Ferm e ol dere
1A Saderdykah Cimpip Buleriyish i don Dtk A
al | pl;l =
6 Click the Run button (the arrow) on Delphi’s toolbar to compile and run your

application.

Final touches

Now when you run the application, you can easily move through your database table
using the buttons on the toolbar. You can add a couple of other touches to complete
the application. Close the running application to return to the design mode of Delphi.

1 Select Panell.

2 From the Data Controls page of the Component palette, drop a DBMermo
component onto Panell and position it so it occupies the upper left corner of the
panel (below the menus and toolbar). Next, set the following property values:

e Set DataSource to DataSourcel.
e Set DataField to Notes (use the drop-down list of fields).
e Set ScrollBars to ssVertical.

3 Drop a DBText object on Panell under the DBMemo object. Enlarge the DBText
object so it fills the area under the DBMemo, then set its properties as follows:

e Set DataSource to DataSourcel.
e Set DataField to Common_Name.
e Set Alignment to taCenter.

3-12 Quick Start

Hooking up an event handler

4 Customize the Font property of the DBText object using the Font editor.

You can access several different types of property editors through the Object
Inspector. For example, you can use the Menu editor, the Font editor, and the
Picture editor to edit form menus, label fonts, and bitmap pictures and glyphs,
respectively.

When you click the Font property of the DBText object, Delphi displays an ellipsis
button on the right side of the property setting, indicating that you can use a
property editor to set this property. Clicking anywhere on the property value
displays the Font editor, a dialog box that lets you edit several characteristics of
fonts.

Modify the following DBText settings using the Font editor, then click OK when
you're done:

* Set the Font Style to Bold.
e Set the Color to Silver.
e Set the Size to 12.

5 You can adjust the form so it looks the way you want it. Then, compile and run
your application by pressing F9.

A Faorml HEE
Eu Edi Baeond Y lication is shani
.| Your application is shaping
| | =i = -
= up. But you still need to
o s e st hook up actions to the
ared InCoEdlily COWeTEl e 100k DyRien commands.
ienTri. ared LTI InE CrUGBaang. Dikars repa /
gl schols Surred Brisdes) Sk on I,
Coreracn Mame | Spocios Hems =]
Bial P Whinbats cakionea
Calinmie ko L 2 Sl
Lisggeed) plinchis i i Fuy B
(=1 5000 T pmes rachven T i g J
Al B adefh 2 o e P2t ||
Murse Shask Limghmcaioma oreium
Sponad Eagle Py agibeming § resanes .
| 3

You now have a fully functioning Windows application that accesses a database table
and displays images, text, and individual data fields from the database. There’s even
a toolbar and a menu with active commands on them.

Hooking up an event handler

Up until now, however, you have not typed a single line of program code. And this is
how it should be if you want to take complete advantage of the Delphi environment.
By using the Object Inspector to set the design-time values of your object properties,
you let Delphi maintain the code that it generates. In other words, let Delphi do the

Your first application-a brief tutorial 3-13

Hooking up an event handler

initialization work and save your coding efforts for the event handlers, the code that
makes your program perform the tasks in your application.

Your next programming feat will be to hook up an event handler to a menu item, a
task you'll encounter often when designing user interfaces with Delphi. You'll
program the command so that when clicked, an event handler will call the standard
Windows File | Save dialog box, which lets you save information from the database
into a file.

1 From the Dialogs page of the Component palette, drop a SaveDialog object onto the
form.

Now comes the most important part of your Delphi programming: creating and
writing an event handler. The easy part is creating the event handler; technical
programming comes into play as you write the Pascal code for the event.

2 Choose File | Save from your form to create the default event handler for the
button.

3 Whenever you select a menu item or double-click an object on a Delphi form,
Delphi generates the code for that object’s default event handler. The Code editor
opens with the cursor placed within the skeleton code for the event handler:

e TP Uit | oo
(21 Wewishlo proowthare TFocml.SavelClick{Sendesr: TObject)al
£ L b gim
nd:
end .
al | A
BB 1 MWodiied e

Up until now, you've used the Object Inspector to set object properties. You can
also use the Object Inspector to access and create object event handlers. By clicking
the Events tab on the Object Inspector, you can see the available events for the
object currently in focus on the Delphi form.

Most components on the Component palette have a default event. When you
double-click an object on a form, Delphi creates the handler for the default event.
For most components, the OnClick event is default; this is the event that gets called
whenever you click an object in a running application.

3-14 Quick Start

Hooking up an event handler

4 Complete the event handler by adding the code that is shown in the var section
and between the begin and end of the event handler:

B Unitl.pas !Em
Unit1 l - -
procedure TForml.3avelClick{3ender: Tobject); =l
var
i: integer;
+ |begin
. daveDialogl.Title :=Format{'3ave info for %', [DBTEXTl.Field.hRs3tringl);
v if SaveDialogl.Execute then
begin
* with TitringList.Create deo
2 try
C Add (Format {"Facts on the %s7, [DETextl.Field.AsStringl)):
+ Add (#13#10) ;
* for 1 := 1 to DBEGridl.FieldCount-3 do
* Add{Format (%3 : %s',
[DBGridl.Fields [i] .FieldNamne,
. DBGridl.Fields[i].AsString]l))
C Add (Format (#13#10+"%s "+#13#10, [DBMemol . Text]))
. JaveToFile (JaveDialogl.FileName) ;
finally
© Free;
end;
end;
+ |end;
63: 14 Modified |Insert

Detailing the workings of this code is beyond the scope of this tutorial. What the
code does is call the File Save dialog box (the SaveDialog1 object) when you choose
the File | Save. When you specify a file name, your application writes data on the
currently selected fish to a text file.

5 To add code for the Exit command, choose File | Exit. Delphi generates and
displays the skeleton event handler in the editor:

procedure TForml.Exitl1Click(Sender: TObject);
begin
end;
Right where the cursor is positioned (between begin and end), type
close;
6 To run the application, press F9.
Congratulations! You have now completed a working Delphi application.

To save the new program to disk, choose File | Save Project As. You can exit the
program using the newly activated File | Exit command.

Your first application-a brief tutorial 3-15

3-16 Quick Start

Customizing the environment

This chapter introduces some of the useful ways you can customize many aspects of
the Delphi environment so that it supports the way you like to work.

Organizing your work area

By now, you should have a good idea of the many tools and windows that support
your development work in Delphi. You've got debugging tools, a Code Explorer to
view the structure of your code, a Project Manager to view your project files and
group related projects, the Object Inspector to set object properties and events, forms
where you design the user interface, a Code editor, and many more.

So many tools are available, you will want to organize your work area so that you
can work most efficiently.

= Ot __ MK
El G st o Peopht Gu aoss [adass Jemi muegeae e

O @5 J $Ilu-\.lu-l|i|-|ﬂﬂ.n-m||l\:'\ﬂl.li‘Is--uo-|lut\.:lmn-w.n.iInun'.nulllhnhm.-anmlItﬁlnnll:\nnﬂlmﬂll_I
#9520 me g T AT des s WEw™ = F s-az

T = Here @ sample thread
e = T | « -~ -| sorting demo is shown
™ : =11 with several tools
displayed and organized
J for easy access.

F-u-hr—gl

Customizing the environment 4-1

Organizing your work area

Organizing tools

Delphi lets you organize all of the tools and tool windows as you want to on the
desktop. The windows and tools are all separate and can be displayed or closed,
however you like to work. Many of the windows can be docked (attached) to other
windows and some of the windows can be docked on top of other windows forming
tabbed tool windows.

For example, while you're designing the application interface, you might want to
dock the Project Manager and the Code Explorer onto the Code editor.

You can dock windows onto others. Here the Project Manager
and the Code Explorer are docked onto the Code editor.

B Mo fiss Tools, such as the Object
d] Inspector, can also be

ax e precedure TMalnforn,Findiddrsss; =l ggcgfgt:lr gasnhgoif/jn here
8 ProjactGmug] £ Begin p y :
= {1 wabl rows. @ HTMLL . Requea thos (URLS . Tent)
=l main end; Cjactinzpecio |
ﬂMﬂh{.‘ﬂ ‘ Foml : TFom 1 L |
FenFaim procedure TMainForm . RboutlClick(Sendse: *
= [l Docan Begin Fropamias |M|
E Decsic pai S howRbouT Bom EiDidode | boledToRig =]
DA Program Files\Ba ond + Bkt con | [N Ejstami i
_a BorderStds | beSizenbls
=, TMeinFom(TFarm ﬂ procedurs THalnForn,looumsntiourcslolicy | Bonderdndn 0
= [Frrmamie begin Compbion Fomi
Histongindes imieger g B] B ClismiHaight 143
3 Histongins TS¥L i :i::“[..s.ur..rm do - e
UpdmisiZombex Booke Shes Colar cBinFace
+ (CEEEEE e e +Constraints | (TSizeCone
da HomeFage e quesit M JLlngs JClear! par The
=[5l Pubdishedd Memol . Linea . Add (RdjuatlineBrsaks (HIMI| o e
¥ Staefinri: TSamed Memol . Selitart = 0: Do Fhdon] chrauciacFon
¥ Mninknul: Thisind e fendMeaaags (Mencl Handls, M SCECllC) procie | Feles
1l o el) Diagkind | ckDiag
AL - | InEeet Dimghios | dmivienssl
Enahkel [T
[P IR -]
FormSide | fekdomal
Hiirdrt ARt |

4-2 Quick Start

Organizing your work area

While debugging code, you can dock watch and breakpoint views onto the editor.
From these views, you can click on a breakpoint or watch and go right to that

location in the code.

B MEHL PAS

mmplsiorm [procees rol acoees

Md Wam |orzseme

B MERNLUPAS K preperty BEsport

B WEHLPAS A7
I

procedurs S0LMasterDetallClick (Sendar: T2l
procadure RadicButtonliClick (Sendec: TObj
procadurs (RCcapositeReportliddReporta (3

T ickRep FREpocE walk

= v -

Just point to the window and drag
it until it's where you want it.

Frivate i
m l FREFOTT @ TouickRep; To dock onto another window,
v procedurs SstRsport (Yalus @ TQuickRep) : J drag until you see a light box
Fiengma/ad. | Lig/Len. G public showing where it will go. If the

box is darker, the window will stay

BUENUPAS 100 separate.
Yar
.] MalabPoem: THALOEGER
L ThiamFor j' implensntatian
=Q ::-‘ j o Click on any error messages
e o < tojump to the problem in the
=i e o cole. P P
1| MR smihdl SEAL nrwHITE clauss sapecisd, but idenbhar "FRepnt’ ound =] X .
5 51 or'* expecied b eniber SeFipotioind ﬁ— With a compiler error selected,
i o P [T press F1to display
information about the error.
You can also dock multiple tools together.
To dock tools together, drag a window over another until
a box appears inside the window and let go.
Breakpoint List |ana| Variahlesl Watch Listl Call Stackl Modules |é U.SE the tabs to dISplay the
different tools.

Line/Len Candition Pass
[EFhAE MU PAS 1]

B MENUPAS 87 0
B MENUPAS 108 0

Here various debugging views
are docked together.

There are infinite ways to organize Delphi tools. As you're working, you'll have to
experiment to discover the most convenient way for you to work.

For more information...
Search for “docking” in the Help index.

Customizing the environment 4-3

Organizing your work area

Organizing menus and toolbars

The main window, which occupies the top of the screen, contains the menu, toolbars,
and the Component palette. You can reorganize its contents.

Main window
showing the
default

Eie Edi Semxch yew Froject Bun Comporenl (etebase Jool Yeodkcmouos Help | @ - neasg
DF B 0% s || Sarded |asanore] Wiz | Sysem | imenet| Dsts sccess | DstsConocls | Decisos Cube | oRecor 1] *

FIT D sl FEAR e s H@-="5 F organization.

You can move the parts around within the main window. Click the grabber (the double bar on the left
of the menu or toolbars) and drag it to where you want it.

Main window

i Deish b windov
Bl Edi Beerch ‘iaw Project Bun Componasi Deishase Tock Miodigroups Help organized differently.

Dl @2 G | @S0 0 A k-l 5T
Stendard | Adcional | Wind2 | Sstem | infemes | Dein Accmss | Dt Comvols | Decision Cube | OFepon 4] F
G Flame=r « m=" 15 8

You can pull these parts off the main window organizing them any way you want or
removing them from the desktop altogether.

You can break up the parts of the main window. Click the grabber (the double bar on the left of the
menu or toolbars) and drag it to where you want it.

B Deelphe & - Paggeoi

= You can even take

2 h ¥ I
Fie Edi Sewvh Miew Pwiect Bun [Covooeesi Dsthoie Tooh wiorkpoups Help the menu off.

el @2 G BHFNR3 aE P IE S You can position the

parts or close them.

;
Stantud | tekBioned Win32 | Seshern | irset | Dusen Sooess | Dt Conarcis | DecisionC 21 E Re-dlspl.ay them
= L, = - using View|Toolbars.
bl == dmg |MAR [=)

Further, you can customize all the toolbars adding or deleting available tools.

Tookers Commands |ﬁh:n5|

Right-click on any
= toolbar and choose
| Customize.
1| From the Commands
page, you can select
e Align o Grid any command listed
Lifi Briad i Fenal .
Emrch Zrard by Rk = and drag it onto the
Tl — toolbar.
W j
To add command buions. desg and drop commands onin the
Toolbar. To mmcse commend bufoss. diag tem of ol he
Toclbar.

4-4 Quick Start

Setting project options

Setting project options

You can change project settings that affect compiling, linking, where files are stored,
and other general application details. You can make these changes from the pages of
the Project Options dialog box displayed by choosing Project | Options.

- . N I P I R . .

— Applicaicn Corapar e = The pages in the Project
. : l Options dialog box let you
Llal e customize compiler options
7 pigred recosd bkt F¥ |40 phecking for your project.
™ Hiack rwraz [~ Cremiioa chackirg Q]
™ FenbsseFON

e Dabuuggng

R Sl w-shings R Dostmie) irdorwtaewn

I Corplais beokanaval F Lacd 2rick

R Egended i [Skl ik

I Lpsd (3 cpuates F Azmtirs]

¥ D [msivdd

FF Huga gang: HF S hoestapz

' dssigradde fped oonstands F Showparings
Click Help or press F1
while pointing to any page

r []| oo | b to ?et details on the

options.

Following are the kinds of options you can set.

Table 4.1
Project options page

Directories/
Conditionals

Version Info

Project options

Types of options

Control the location of the project’s compiled output, specify location of
application resources, enter conditional compiler directives.

Specify version information for the project and whether to automatically
increment the build number.

Packages List the design-time packages installed in the IDE and the runtime
packages required by your project.

Forms List available forms; select the main form for applications; choose which
of the available forms are automatically created and in which order.

Application Specify a title, a Help file, an icon, and an extension for your application.

Compiler Set options for how you want your program to compile. These options
correspond to switch directives that you can also set directly in your
program code. Includes options for optimization, debugging information,
runtime errors, and many other compiler options.

Linker Set options for how you want your program to link including options for a
map file, linker output files, and EXE and DLL generation.

For more information...

For details about the options on any page of the Project Options dialog box, click the
Help button on that page or search for “Project Options dialog box” in the Help

index.

Customizing the environment 4-5

Creating project defaults

Setting options for all new projects

The Project Options dialog box contains a check box labeled Default. Checking
Default writes the current settings from the Compiler, Linker, Directories/
Conditionals, Packages, and VersionInfo pages of the Project Options dialog box to
the options file DEFPRO]J.DOF. Delphi then uses the project options settings stored in
this file as the default for any new projects you create.

For: | Appksbn | Cowds | ke -+ The pages in the Project
b i | Veuionink s Options dialog box let you
Cargngachager customize compile and link
! DuiphiCiacivion Cuba Cranporanis | options for your project.
| Dmiphii rdarbsca E-vart: Alsm Corspanant
'
¥ Dmipha b idaz Corspanantz J
| [mipha S sarnpds Corporanh
W Dmiphi S asrpds | npedud St Corirmk |

o WFogin Fibe o' pdlwred [pipd . (N8 infuolrestl Ddpl

g s | ;mr\lll

Fiumntione paok-ses
& B il wth ey [b e
I-.":Lr’.-!] WCLADTLA D) WCLD B SCLD A DMMFAS T tafl

I\ Dalat | Ceed | e |
' i\ Click Help or press F1
Put a check here to use the while pointing to any dialog
runtime packages specified box to get details on the
here by default for all new options.
projects you create.
For more information...

See “projects, options” in online Help.

Restoring Delphi’s original default settings

To restore Delphi’s original default settings, delete or rename the DEFPRO].DOF file
which is located in the project directory.

Creating project defaults

You can use default projects and forms to standardize a set of related projects.

Specifying a default project

A default new project opens whenever you choose File | New Application. If you
haven't specified a default project, Delphi creates a blank project with an empty
form. You can specify a project you're using as a template to be the default new
project.

4-6 Quick Start

Setting tool preferences

You can also designate a project wizard to run by default when you start a new
project. A project wizard is a program that enables you to build a project based on
your responses to a series of dialog boxes.

You always have the option to override the defaults by choosing File | New and
selecting any item from any of the tabbed pages available through the New Items
dialog box.

For more information...
Search for “projects, specifying default” in the Help index.

Displaying a default form

A default new form opens whenever you choose File | New Form or use the Project
Manager to add a new form to an open project. If you haven’t specified a default
form, Delphi uses a blank form. You can specify any form as the default new form.
Or you can designate a form wizard to run by default when a new form is added to a
project.

You can also specify a form template or expert to use as the default main form
whenever you begin a new project.

For more information...
Search for “forms, specifying default” in the Help index.

Setting tool preferences

You can customize tools such as the editor, designer, debugger, and compiler that
you use in the Delphi environment. The options that you set affect all Delphi projects.

To specify environmental preferences, choose Tools | Environment Options. This
displays the Environment Options dialog box. There are literally hundreds of
environment options that let you control tool usage for all projects on the 10 tabbed
pages. The best way to learn about the options is to click on the tabs and look at the
different options.

For more information...

Click the Help button on any page of the Environment Options dialog box for help
with that page, or search for “Environment Options dialog box” in the Help index.

Customizing the environment 4-7

Customizing the Component palette

Customizing the Code editor

One of the tools you may want to customize right away is the editor.

Tools ¥orkgeosps Help

[Ermronmest Gptons_____|
Dedwgoer Domon
Bepositon
CoigueTock . (A Several pages in the
Package Coliecion B | Coda ek | Exgdnmr Environment Options
m::l;;sdu Frefemmnces] Librmny Edinr] Canplmy | Color] Prletis dla|Og bOX haVe Delphl
e Code editor options you
EdinrSpeedS=ting |Dﬂl&.l.|-ﬂ-\.'|llﬂ|:|plll] j can set
Eckior opilionm
F Ao ndentmode ™ Unclo alter smwe
R pscrt modo " E=op maiing blanks
™ Ur= sk chaacher I BRIEF regulnr ecpressions
~ Emanish I~ Pars ke biocks
™ Opimed Al F (heenenite blocks
FF Backspace iindents I Dokl cick e You have a choice of
F Cuimscr fhimugh bz ™ Find sl &1 curr four keystroke
F Gmup wdo I Enros ot and copseenabled mappings that set editor
™ Cumd bnsond EOF F Usa gynise highight Options_ Or you can
choose your own
= HETET -] .
Bhockigcet [2 e i custom set of options.
Tk siops Iﬂ j
Eynine aatamaiong P dendpk nedim |
L8, I Caaniped | Hak |

Set your own colors for the editor including syntax highlighting on
the Colors page. Set font and other properties on the Display page.

For more information...

Click the Help button on the Editor page of the Environment Options dialog box or
search for “Editor” in the Help index.

Customizing the Component palette

Delphi includes many components that are part of a class hierarchy called the Visual
Component Library (VCL). Components are the elements you use to build your
Delphi applications. They include all the visible parts of an application interface,
such as edit controls and buttons as well as those that aren’t visible, such as datasets
or timers.

Some useful components are placed on the Component palette and they are
organized logically onto tabs. However, the components that you want easy access to
may not be included in the default palette organization. You have control over which
components appear on the Component palette and in what order. You can

¢ Hide, rearrange, and rename components

¢ Install additional components

4-8 Quick Start

Customizing the Component palette

¢ Create component templates (standard or custom) and add them to the palette

B Oeelpl 4 - Project]

Eike Echi Besrch ‘iew Project Fun Componesi Deishese Took Workgeosps Belp | & =01 & o
O d| 03 & || Stendard |J'-clcﬂund|\\'m]2 | St | immet | Drin Aocess | Dets Comiols | Decision Cube | CRepon 4] +
A0 ine | rFliATEor « Bm-="E &

You can create new components and
add them to the Component palette.

Componant [eishess Tools Workg
You can also rearrange the palette and add Mot Comgonat
new pages. Choose Tools|Environment =il COMPOREN. | s Cormprart
Options, then the Palette page. Wi At Car
Tools ¥orkgeosps Help Insinl Packages ClarMyes |
1 Conbgus Paere
Dk goer Domon Euistin Pags: |5m-: l
Q Eriermes gtion: [Lk nane [=
Ppencer | Lbewy | B | Deps | Dok | Debugoe -
Pabstia | == | Tt gt 'I Evboret 4 wanch i ID Wiwiphet B+l O iepesd (BN
Euguz Earpararis
© T (- = [| cwe | s |
Acickbonal
Mo S
< priarn
1 —
I'.I::‘::::ll #} TRopuphlces ——
Bcon ot A e st
Fspor
r.mq.' [T | TEm rioka T
il :
3:\::/: _.J Thiwra cicied c L)
I':lll-lﬁs | TR0 gl g
B | TCreckBos g el =
£ peme | Bewwe | | Heepes |
[OF I Lancal J Hul |

Rearranging the Component palette

To add, delete, or rearrange Component palette pages or to rearrange components on
the pages, choose Component | Configure Palette. The Palette Properties dialog box
lists each page on the palette and the components that appear on that page.

You can do the following:

Move, delete, or rename a page

Add a page
* Rearrange components on a page
e Move components from one page to another,

¢ Display a previously hidden component

Customizing the environment 4-9

Customizing the Component palette

Adding components to Delphi

You can use design-time packages to add components to the IDE. The DCLUSR30
design-time package is provided as a default container for new components.

You can install your own component packages or component packages from third-
party developers. Then, in the Project | Options dialog box you specify all the
packages that you want your project to use.

Note ~Writing components generally requires a more in-depth knowledge of Object Pascal
and object-oriented programming than using the components provided in Delphi’s
VCL.

For more information...

Search for “components” in online Help for instructions on how to add components
to Delphi. See “Creating Custom Components” in the Help contents for information
on writing components.

Installing component packages

Components you're installing to the Delphi IDE must be contained in a package. The
unit file that contains your component source code must follow the model for
component source files. To install packages, choose Component | Install Package.

The components in the package are installed on the Component palette pages
specified in a call to the RegisterComponents procedure.

For more information...

Refer to “Programming with Delphi” in the Help contents. You can search for
“packages” in the Help index.

Adding ActiveX controls

You can add ActiveX controls to the Delphi component library as long as they
conform to Microsoft specifications. To do so, specify the ActiveX library file that
contains the control you want to add. Delphi then automatically creates a “wrapper”
unit (a .PAS file) for the control to make it into a recognizable object type, and adds it
to the list of installed units. You can specify a name for the control and which palette
page you’d like it to appear on.

To add an ActiveX control to the component library, choose Component | Import
ActiveX Control. The Import ActiveX Control dialog displays the ActiveX controls
that are registered on your system so you can add them to your Delphi projects.

For more information...

From the Import ActiveX Control dialog box, click Help for instructions on adding
ActiveX controls. Search for “ActiveX controls” in the Help index.

4-10 Quick Start

Customizing Delphi Help

Creating component templates

You can create component templates that are made up of a number of components.
After arranging components on a form, setting their properties, and writing code for
them, you can save them as a component template. Later, by selecting the template
from the Component palette, you can place the preconfigured components on a form
in a single step; all associated properties and event-handling code are added to your
project at the same time.

Once you place the template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

For more information...
Search for “component template” in the Help index.

Customizing Delphi Help

Delphi comes with numerous Help files and a tool called OpenHelp that helps you to
configure Windows Help (.HLP) files. You start OpenHelp by choosing Help |
Customize Help (or clicking on OH.EXE in the Bin directory).

& UpenHelp - Dy Pmagram DilesiHorandiDsiphdHelpidelpmdohp !EE
Ele Ede el . .
mo s Delphi's default Help system is set up
= in the Delphi4.ohp project file in the

Corfoah [indo | Lisk | Frojedi| Help directory. You can customize this
Tris [Fets |_=e]c| project file by adding or deleting Help
W' vhars e n Disiph O Program Fikes) Bord snd| D iphefi Heip! del 200l files.
"‘-'-:--dl Compone Library R O yFrograrm Fikes) Dor sn o\ Celphi TiHeiphded HED 0 Lo . .
:-':c:?-;fmlkm"# gude C\Frogram E:-Er:t-:-_m:::--:-::or'- . :E oif This list controls which Help files

C | reabopes Guide Cr Frogrem 21 Bior an diCaaiphi-TiH edp 'y de: o8 0 H H H
8 Cisioging Denebiasn Appl . 0 \Frogram Fkes\ B s\ DalheiHoghas . o of| appearin the Help Contents in Delphi.
i Dicnscdoping briaimat el icati . 100y Fyogran Fikes\ Bion s oy Daiphi-n Holp ded ™H 0
e T o g W5 Cuid e Cr YPogrann Filkes,Blor an diDalphedi Help ded 148 0
ke with COM il DLE O YProgran Rk Bosd an D lgphi i Help b ded =H 0
1l | D

Delphi provides a default Help system that includes all the Help files in the master
table of contents. Choosing Help | Contents in Delphi displays this table of contents.
With OpenHelp, you can customize the Help system so it displays the information
you want it to. You can add or remove Help files. You can even add Help for
additional tools you work with in the Delphi development environment. OpenHelp
also allows you to remove references to obsolete Help files from the system registry.

OpenHelp stores information about your Help system in a project. The project
defines a master table of contents, master index, and a context-sensitive Help search
range for a set of Windows Help files.

For more information...

Choose Help | Contents while running OpenHelp for details about using OpenHelp
to customize your Help system.

Customizing the environment 4-11

4-12 Quick Start

Programming with Delphi

Delphi provides a visual programming environment for developing Windows 95,
Windows 98, and Windows NT applications. Delphi includes a comprehensive class
library called the VCL and a suite of RAD design tools, including application and
form templates, and programming wizards. Delphi supports truly object-oriented
programming: the class library includes objects that encapsulate the Windows API as
well as other useful programming techniques.

This chapter describes the features of the Delphi development environment and
touches on many of the tools that are available to you.

Delphi development environment

When you start Delphi, you are immediately placed within the visual development
environment, called the IDE. This environment provides all the tools you need to
design, develop, test, debug, and deploy applications.

Delphi’s development environment includes a visual form designer, Object
Inspector, Component palette, Project manager, Code Explorer, source code editor,
debugger, and installation tool. You can move freely from the visual representation
of an object (in the form designer), to the Object Inspector to edit the initial runtime
state of the object, to the source code editor to edit the execution logic of the object.
Changing code-related properties in the Object Inspector, such as the name of an
event handler, automatically changes the corresponding source code. Likewise,
changes to the source code, such as renaming an event handler method in a form
class declaration, are immediately reflected in the Object Inspector.

For more information...

See “Using Delphi” in the Help contents and search for “IDE,” “Object Inspector,”
“Code Explorer,” “Component palette,” or “debugging” in the Help index.

Programming with Delphi 5-1

Designing applications

Another way to find out about the IDE is to select any window, tool, or dialog box
and press F1. You can also use the online tutorials provided with Delphi.

Designing applications

You can use Delphi to design any kind of 32-bit application—from general-purpose
utilities to sophisticated data access programs. Delphi’s database tools and data-
aware components let you quickly develop powerful desktop database and client/
server applications. Using Delphi’s data-aware controls, you can view live data while
you design your application and immediately see the results of database queries and
changes to the application interface.

The type of application you can design is somewhat determined by the specific
Delphi product version you purchased. Different product versions support different
types of program development. Table 5.1 describes the main features of each version.

Table 5.1 Delphi product versions

Product Development tools

Standard General-purpose 32-bit Windows programming; OLE automation; COM and
interface support; multi-threading; data-aware components; and report
generation.

Professional Same as Standard plus enhanced support for database development using

Access, Paradox, or dBASE files; ODBC; ActiveX support; local Interbase for
SQL development; VCL source code for object development; charting
components; Internet components.

Client/Server ~ Same as Professional plus support for two-tier and multi-tier database
development; CORBA support with VisiBroker; MTS support; Oracle8 object
relational database connectivity; integrated suite of components for building
HTML server applications; and decision support. Includes SQL drivers, SQL
Monitor, SQL Explorer, Interbase (4-user license), InstallShield, PVCS Version
Manager.

Refer to Inprise Online (www.inprise.com) for up-to-date product information.

Using the VCL

The Visual Component Library (VCL) includes many classes that you can use in your
applications. The classes are organized into the VCL object hierarchy. Figure 5.1
shows the relationship of some of the classes that make up the VCL.

5-2 Quick Start

Designing applications

Figure 5.1 Visual Component Library object hierarchy
TObject

Exception ~ TStream TPersistent TComObject Tinterface
|

I [| I
TGraphicsObject TGraphic TComponent TCollection TStrIngs
|

{ | { ! { |
TApplication TDataSet TMenu TControl ~ TCommonDialog TField
[‘ I
TGraphicControl TWinControl
{ | \
TScrollingWinControl TCustomControl

Most visual controls
TCustomForm ;) :
inherit from TWinControl.

You can learn about the available objects in the hierarchy by browsing through the
VCL Reference online, or by glancing at the VCL poster included with the product.

The VCL is intimately tied to the Delphi IDE, and is what gives you the ability to
quickly develop applications. Components are the elements you use to build your
Delphi applications. They include all the visible parts of an application interface,
such as dialog boxes and buttons, as well as those that aren’t visible while the
application is running, such as system timers or COM servers.

All VCL objects, and in fact all objects in Object Pascal, are derived from TObject.
TObject is unique in that it is an abstract object that has no properties or events, only
methods that allow you to derive objects from this base class. Use TObject as the
immediate base class when writing simple objects that are not components.

Components are objects that you can manipulate at design time. All components in
the VCL are derived from the abstract component type TComponent. TComponent
provides the minimal properties and events necessary for a component to work in
Delphi (for example, so the component can be installed on the Component palette
and added to forms visually by dropping it). The various branches of the library
provide other, more specialized capabilities.

The VCL components you will likely use the most are the VCL’s controls, such as
TForm or TSpeedButton. Controls are visual components derived from the abstract
component type TControl.

Of the over 600 objects in the VCL, most are not visual. The Delphi IDE allows you to
visually add some nonvisual components to your programs. For example, to write a
database application that connects to a table, you could drop a TDataSource
component on your form. TDataSource is a nonvisual component, but is represented
on the form by an icon (which doesn’t show up at runtime), and you can manipulate
the properties and events of TDataSource in the Object Inspector just as you would a
visual control.

Programming with Delphi 5-3

Designing applications

For more information...

To learn about specific VCL components, see the “VCL Reference” in the Help
contents. Point to any VCL component, property, event, method, function,
procedure, or type in the Code editor and press F1.

For detailed information on using specific components to accomplish programming
tasks, see “Programming with Delphi” in the Help contents. For general information
about the VCL, search for VCL in the Help index.

Creating the application user interface

All visual design work in Delphi takes place on forms. When you open Delphi or
create a new project, a blank form is displayed on the screen. You can use it to start
building your application interface including windows, menus, and common

dialogs.

You design the look and feel of the graphical user interface for an application by
placing and arranging visual components such as buttons and list boxes on the form.
Delphi takes care of the underlying programming details. You can also place
nonvisible components on forms to handle a variety of different tasks such as
activating specific code a scheduled intervals, capturing information from databases,
performing calculations, and managing other interactions. You can manipulate all
components—visual or nonvisual—by changing their properties.

As you are designing the interface, you can use action lists to standardize responses to
user actions. Drop an action list (from the Standard page of the Component palette)
onto a form and choose from a list of commonly used actions or create your own. For
example, Cut, Copy, and Paste actions are some of the actions you can use with
existing controls such as TEdit. By standardizing, you create an application that is
easier to maintain and contains reusable bits of code.

For more information...

See “Using Delphi” and “Programming with Delphi” in the Help contents or search
for “forms” and “action lists” in the Help index.

Using components

Many of the VCL components are provided in the development environment itself
on the Component palette. You select components from the Component palette and
drop them onto the form to design the application user interface. Once a visual
component is on the form, you can adjust its position, size, and other design-time
properties using the Object Inspector without having to write a single line of code.

Delphi components are grouped functionally on the different pages of the
Component palette. For example, commonly used components such as those to
create menus, edit boxes, or buttons are located on the Standard page of the
Component palette. Handy controls such as a timer, paintbox, and media player are
on the System page.

5-4 Quick Start

Designing applications

Components achieve a high degree of encapsulation. For example, consider the use
of a dialog containing a push button. In Delphi, the push button component is pre-
programmed to respond to a mouse click using its built-in OnClick event handler.
Your program does not have to determine that a button has been clicked. You only
provide the routine that is called when the button is clicked, and through the Object
Inspector, assign that routine to the OnClick event of the button.

Similarly, most Windows messages are handled by Delphi components. When you
want to respond to a Windows message, you need only provide an event handler.

For more information...

See “Using Delphi” in the Help contents or search for “components” or “forms” in
the Help index.

Changing component behavior

You can easily customize the way a component appears and behaves in your
application by using the Object Inspector. When a component is selected on the form,
its properties and events are displayed in the Object Inspector.

You use the Properties page of the Object Inspector to set the initial program startup
values for the components you've placed on the form. You use the Events page of the
Object Inspector to quickly navigate among events that each component can
implement. By clicking on a particular event, Delphi generates the event handler
code for that specific component event. In Delphi, you will spend most of your
programming time writing the event handlers for the objects that you place on your
application forms, rather than managing the details of Windows programming.

For more information...

See “Using Delphi” in the Help contents or search for “component,” “Object
Inspector,” and “event handler” in the Help index.

Designing menus

After you add a menu component to a form, you can use the Menu Designer to create
and edit menu bars and pop-up menus. You need to add a menu component to your
form for every menu you want to include in your application. Delphi provides
predesigned menu templates that you can use to design menus, or you can build the
menu structure of your program from scratch.

The menus you design are immediately visible in the form without having to run the
application to see the results. You can also change menus at runtime to provide
additional options for the application user.

For more information...

See “Programming with Delphi” in the Help contents or search for “menus” and
“Menu Designer” in the Help index.

Programming with Delphi 5-5

Developing applications

Developing applications

One of Delphi’s strengths is that it simplifies Windows application development.
Delphi includes several wizards and other specialized tools that speed up the
development process. Delphi is an ideal tool for developing all types of business
applications, games, custom controls, utilities, Web-enabled applications, and
complex database applications.

Following are the three basic types of Windows applications you can use Delphi to
develop:

* Windows GUI applications
¢ Console applications
¢ Service applications

Windows GUI applications are the most common type of software available for the
Windows platform. The Graphical User Interface (GUI) consists of windows and
dialog boxes which work together to perform a group of functions. Word processors,
spreadsheets, and Delphi are examples of GUI applications. Delphi is also well-
suited for developing console applications (such as Grep) and service applications
(such as NT servers).

You can develop dynamic link libraries (DLLs) and packages, a special type of DLLs,
to add features to the design environment or to the application itself. See “Creating
packages and DLLs” on page 5-7.

You can also use Delphi to develop other specialized types of applications. Refer to
“Writing database applications” on page 5-8 for information about some of the tools
available to help with database application development. See “Developing
distributed applications” on page 5-11 for information on client/server applications.

For more information...

See “Using Delphi” in the Help contents or search for “applications,” “DLLs,” and
“packages” in the Help index.

Creating Windows GUI applications

Lots of developers use Delphi to develop Windows GUI applications because Delphi
makes it so easy to design an integrated user interface. You can use the Form
Designer to visually create the user interface using the many components provided
in the VCL. You can control the design-time and runtime behaviors of your
applications by setting project options in the Delphi IDE.

You can design both single document interface (SDI) or multiple document interface
(MDI) applications using Delphi. In an MDI application, more than one document or
child window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors. An SDI application, by
contrast, normally contains a single document view.

5-6 Quick Start

Developing applications

For more information...

See “Using Delphi” in the Help contents or search for “applications” and “user
interface” in the Help index.

Creating packages and DLLs

Dynamic link libraries (DLLs) are modules of compiled code that work with an
application to provide distinct features. They typically contain code that can be used
for more than one application.

A package is a special dynamic link library used by Delphi applications, the IDE, or
both. Runtime packages provide functionality when a user runs an application.
Design-time packages are used to install components onto the Component palette in
the IDE and create special property editors for custom components. A single package
can work at both design time and runtime. To distinguish them from other DLLs,
package libraries are stored in files that end with the .DPL (Delphi package library)
extension.

Like other runtime libraries, packages contain code that can be shared among
applications. For example, most of Delphi’s commonly used components reside in a
package called VCL30. Each time you create an application, you typically specify that
it uses VCL30. When you compile an application created this way, the application’s
executable image contains only the code and data unique to it; the common code is in
VCL30.DPL. A computer with several package-enabled applications installed on it
needs only one copy of VCL30.DPL, which is shared by all the applications and the
Delphi IDE itself.

For more information...

See “Developing Delphi Applications” in the Help contents. Search for “packages” in
the Help index.

Handling exceptions

Error conditions in Delphi are indicated by exceptions. An exception is an object that
contains information about what error occurred and where it happened. Exceptions
are built into many classes and they are raised automatically when something
unexpected occurs. You need to use exception handling to recognize, locate, and deal
with programming errors.

Delphi includes many exception classes for automatically handling errors such as
divide-by-zero and file input/output errors. All of the exception classes descend
from one root object called Exception. Exception encapsulates the fundamental
properties and methods for all exceptions and provides a consistent interface for
applications to handle exceptions.

Programming with Delphi 5-7

Writing database applications

For more information...

See “Developing Delphi Applications” in the Help contents or search for “exception
handling” and “Exception” in the Help index. You can also type “Exception” in the
Code editor and press F1 to view specific reference information.

Writing database applications

Database applications allow users to interact with information that is stored in
databases. Databases provide structure for the information, and allow it to be shared
among different applications.

The Borland Database Engine (BDE) supports scaling from desktop to client/server
applications. In fact, one of Delphi’s strengths is its support for creating advanced
database applications. Delphi includes built-in tools that allow you to connect
natively to Oracle (including Oracle8 with its object-relational extensions), Sybase,
Informix, DB2, dBASE, Paradox, FoxPro, Access and Access97, and other servers.
While connected, Delphi enables transparent data sharing between applications.

For more information...
See “Developing Database Applications” in the Help contents.

Connecting to databases

The BDE includes drivers to connect to different databases. The Standard version of
Delphi includes drivers for local databases: Paradox, dBase, FoxPro, and Access.

With the Professional version, you also get access to Open DataBase Connectivity
(ODBC). The goal of ODBC is to make it possible to access any data from any
application, regardless of which database management system is handling the data.
An ODBC adapter allows the BDE to use vendor-supplied ODBC drivers. By using
the ODBC driver, your application can access any ODBC-compliant database.

The Client/Server and Enterprise versions include drivers for remote database
servers. You can use the drivers installed with SQL Links to communicate with
remote database servers such as Interbase, Oracle, Sybase, Informix, Microsoft SQL
server, and DB2.

Using database tools

Tools, such as the SQL Explorer (or Database Explorer), Data Dictionary, Database
Desktop, and the BDE Administrator simplify the database application development
process. These database tools make it easy for the client to connect to databases,
browse existing schema, create new schema, and so on.

5-8 Quick Start

Writing database applications

Browsing databases

SQL Explorer in Delphi Client/Server and Enterprise (or Database Explorer in the
other editions) is a hierarchical browser for inspecting and modifying database
server-specific schema objects including tables, fields, stored procedure definitions,
triggers, references, and index descriptions.

Through a persistent connection to a database, the explorer lets you

Create and maintain database aliases

View schema data in a database, such as tables, stored procedures, and triggers
View table objects, such as fields and indexes

Create, view, and modify data in tables

Enter SQL statements to directly query any database

Create and maintain data dictionaries to store attribute sets

For more information...

See “Developing Database Applications” in the Help contents or search for
“Database Explorer” or “SQL Explorer” in the Help index. For detailed information,
see the Database Explorer Help file (Dbexplr4.hlp).

Storing data information

The Data Dictionary provides a customizable storage area, independent of your
applications, where you can create extended field attribute sets that describe the
content and appearance of data.

For example, if you frequently develop financial applications, you may create a
number of specialized field attribute sets describing different display formats for
currency. When you create datasets for your application at design time, rather than
using the Object Inspector to set the currency fields in each dataset by hand, you can
associate those fields with the extended fields attribute set in the Data Dictionary.
Using the Data Dictionary also ensures a consistent data appearance within and
across the applications you create.

In a client/server environment, the Data Dictionary can reside on a remote server for
additional sharing of information.

For more information...
See “Developing Database Applications” in the Help contents or search for “Data
Dictionary” in the Help index.

Editing existing database tables

You can use the Database Desktop (DBD) to browse and modify existing Paradox
and dBASE tables or create and populate new ones, create indexes, define referential
integrity, and create database-level validation and business rules for them. You can
browse and create BDE aliases as well.

The DBD is a standalone utility that runs outside the Delphi IDE.

Programming with Delphi 5-9

Writing database applications

For more information...

For detailed information, see the Database Desktop Help file (Dbddesk.hlp). See also
“Database Desktop” in the Help index.

Configuring databases

The BDE Administrator is included with Delphi. You use the BDE Administrator to
perform tasks such as the following:

¢ Configure the BDE

¢ Configure standard (Paradox, dBASE, FoxPro, and ASCII text), SQL, Access, and
ODBC drivers; create and delete ODBC drivers

¢ Create and maintain database aliases
For more information...

See “Developing Database Applications” in the Help contents. For detailed
information, see the BDE Administrator Help file (BDEAdmin.hlp).

Understanding database application architecture

You can use Delphi to write database applications of varying complexity. When
writing applications that use information that is not shared among several users, you
may want to use a local database in a single-tiered application. Writing a two-tiered
application provides more multi-user support and lets you use large remote databases
that can store far more information.

Note ~ Support for two-tiered applications requires SQL Links, which is available only in the
Client/Server, and Enterprise versions.

When the database information includes complicated relationships, or when the
number of clients grows, you may want to use a multi-tiered application. In the multi-
tiered database model, an application is partitioned into parts that reside on different
machines. A client application provides a user interface to the data and passes data
requests through an application server.

In Delphi, support for multi-tiered applications is based on the Multi-tiered
Distributed Application Services Suite (MIDAS). MIDAS is used to build distributed
applications on the Windows platform with DCOM, TCP/IP, or OLE Enterprise.
MIDAS provides a suite of advanced components for Delphi, services, and core
technologies for multi-tier application development. With MIDAS, you can build
thin client applications whose business rules can be maintained on the server and
automatically updated on the client. MIDAS helps to implement

High server availability with fail-over safety
Load balancing

Distributed datasets and transaction processing
Thin client applications

Automatic database constraint propagation
High-speed database connectivity

Reduced network traffic

5-10 Quick Start

Developing distributed applications

Choose File | New and look at the Multi-tier page to see available project templates
and wizards that you can use as a starting point for developing multi-tiered
applications.

Note Support for multi-tiered applications is available only in the Client/Server and
Enterprise versions.

For more information...

See “Developing Database Applications” in the Help contents or search for
“databases,” “client applications,” and “server applications” in the Help index.

Developing distributed applications

Distributed applications are applications that you can run on various machines and
platforms. They work together, typically over a network, to perform a set of related
functions. For example, a purchasing application for tracking purchases for a
nationwide company might require individual client applications for all the outlets, a
main server that would process the requests of those clients, and an interface to a
database that stores all the information regarding those transactions. By building a
distributed client application (such as a Web-based application), maintaining and
updating the individual clients is vastly simplified.

Delphi provides several options for implementing distributed applications:

¢ TCP/IP applications

¢ COM and DCOM applications
* CORBA applications

¢ Database applications

The Client/Server edition of Delphi provides tools that help you to create Web server
applications as CGI applications or dynamic-link libraries (DLLs) using a message-
oriented approach. In these applications, a client sends a message to a server and gets
a message back. Special components on the Internet Component palette page make it
easy to create event handlers that are associated with a specific Uniform Resource
Identifier (URI) and, when processing is complete, to programmatically construct
HTML documents and transfer them to the client.

Delphi Client/Server also provides socket components that let you create an
application that can communicate with other systems using TCP/IP or related
protocols. Using sockets, you can read and write over connections to other machines
without worrying about the details of the networking software. Sockets provide
connections based on TCP/IP protocol, but they can also work with related protocols
such as Xerox Network System (XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

A server or client application is usually dedicated to a single service such as
Hypertext Transfer Protocol (HTTP) or File Transfer Protocol (FIP). Using server
sockets, an application that provides one of these services can link to client
applications that want to use that service. Client sockets allow an application that
uses one of these services to link to server applications that provide the service.

Programming with Delphi 5-11

Developing distributed applications

Delphi also supports an object-oriented approach to writing distributed applications.
In this model, the client interacts with an object that could be on any machine in the
network. CORBA and COM are examples of this model. They are explained in the
following sections.

For more information...

See “Developing Distributed Applications” in the Help contents for details on
developing client/server applications.

Developing CORBA applications

Delphi provides wizards and classes to make it easy to create distributed
applications based on the Common Object Request Broker Architecture (CORBA).
CORBA is a specification adopted by the Object Management Group (OMG) to
address the complexity of developing distributed object applications. CORBA
provides an object-oriented approach to writing distributed applications in contrast
to a message-oriented approach such as the one used for HTTP applications.

VisiBroker is Borland’s ORB technology used for developing distributed
applications. VisiBroker implements the CORBA 2.0 and IIOP standards developed
by the OMG, and can interoperate with other CORBA-compliant Object Request
Brokers (ORBs) in a distributed object computing environment. The ORB connects a
client application with the objects it wants to use. The ORB handles the details of
locating the object, routing the request, and returning the result.

Delphi can be used to develop CORBA objects and clients. The design of a CORBA
application is much like any other object-oriented application, except that it includes
an additional layer for handling network communication when an object resides on a
different machine. This additional layer is handled by special objects called stubs and
skeletons. You use the type library editor to define the CORBA interfaces and
automatically create the skeleton and stub objects that handle low-level CORBA
communication.

For more information...

See “Developing Distributed Applications” in the Help contents or search for
“CORBA” in the Help index. Refer to the VisiBroker documentation for information
on using VisiBroker.

Developing distributed applications using COM and MTS

COM (Component Object Model) is a client/server object-based model designed by
Microsoft that enables interaction between software components and applications.
This technology is also referred to as ActiveX, which is a consolidation of OLE and
OCX implementations.

COM provides object interoperability using predefined routines called interfaces.
COM has a library containing a set of standard interfaces that define the core
functionality of a COM object, and a small set of API functions designed for the

5-12 Quick Start

Developing distributed applications

purpose of creating and managing COM objects. COM objects can be transparently
extended, modified, and updated because unique identifiers are used to create them
and to access their interfaces.

Using Delphi to create COM-based applications offers many business solutions, from
improving software design by using interfaces internally in an application, to
creating objects that can interact with other COM-based API objects on the system,
such as the Win95 Shell extensions, Web page support, and DirectX multimedia
support.

For more information...

See “Developing Distributed Applications Using COM and MTS” in the Help
contents.

Creating COM applications with wizards

Delphi provides wizards and classes to make it easy to implement applications based
on COM. With these wizards, you can create simple COM-compatible classes to use

within a single application or you can create fully functional Automation servers or

ActiveX controls.

Delphi provides wizards to create

Simple COM objects

Automation servers

Automation controllers

ActiveX servers or ActiveForms

Microsoft Transaction Server (MTS) objects

When you use Delphi wizards and VCL objects in your application, you are using
Delphi’s implementation of the COM specification. Delphi also provides wrappers
for additional COM services such as Active Documents.

For more information...

See “Developing Distributed Applications Using COM and MTS” in the Help
contents. Search for “ActiveX,” “COM,” and “COM interfaces.”

Using MTS with Delphi

You can use Delphi to create a COM object that can work within the Microsoft
Transaction Server (MTS) environment. MTS is a component-based transaction
processing system for building, deploying, and managing large intranet and Internet
server applications. Even though MTS is not architecturally part of COM, it is
designed to extend the capabilities of COM in a large, distributed environment. It
provides support for resource pooling, transaction processing, and security.

MTS and MIDAS are complementary technologies. MTS acts as a transaction server
that manages transactions for objects. These objects are written by Delphi developers
and managed by MTS. The components may have database connections by

Programming with Delphi 5-13

Deploying applications

indicating they are transactional, or they may not. If these components contain ODBC
connections for Microsoft SQL Server, these connections become part of the
transaction, and MTS can talk directly with the ODBC Driver. MTS developers using
MIDAS gain thin client briefcase mode, automatic constraint and business rule
updates, data updates, and support for database engines other than Microsoft SQL
Server

For more information...

See “Developing Distributed Applications Using COM and MTS” in the Help
contents.

Creating and editing type libraries

Type libraries are files that include information about data types, interfaces, member
functions, and object classes exposed by an ActiveX control or server. Type libraries
identify what types of objects and interfaces exist on your ActiveX server.

By including a type library with your COM application or ActiveX library, you make
information about the objects in your application available to other applications and
programming tools. Delphi includes a Type Library editor that enables you to create
and edit type libraries. The Type Library editor is a graphical tool that lets developers
examine and create type information for ActiveX controls, COM, and CORBA objects
and clients.

For more information...

See “Developing Distributed Applications Using COM and MTS” in the Help
contents. Search for “Type Library editor,” “COM,” and “CORBA” in the Help index.

Deploying applications

Delphi includes add-on tools to help with application deployment. For example,
InstallShield Express helps you to create an installation package for your application
that includes all of the files needed for running a distributed application. PVCS
Version Manager software is also available for tracking application updates.

If you are writing applications that you plan to distribute internationally, Delphi also
has tools and guidelines for internationalizing and localizing applications. For
example, you can use the string table editor to edit binary RES files created while
using the Resource DLL wizard.

For more information...

Search for “deploying applications” and “international applications” in the Help
index.

5-14 Quick Start

Building custom components

Building custom components

You may find that you need to solve a specific application programming need by
building your own components. When you create a component, you add to the VCL
by deriving a new class from one of the existing class types in the hierarchy.

There are four primary reasons to build custom Delphi components:

To provide additional functionality
To support reusability

To increase productivity

To promote consistency

You can create components in Delphi using the same development environment as
you use to develop applications.

For more information...
See “Creating Custom Components” in the Help contents.

Programming with Delphi 5-15

5-16 Quick Start

A

accessing
databases 3-5
action list 5-4
activating property editors 3-13
ActiveX 5-12
controls 4-10
servers 5-14
adding
components 3-3
overview 2-2
memos 3-12
objects 3-3 to 3-4
adding components 4-10
applications
client/server 5-10
CORBA 5-12
creating 2-11, 3-1
database 5-8
deploying 5-14
designing 3-2, 3-3, 5-2
distributed 5-11
fixing errors 2-9
tiered architecture 5-10
Automation servers 5-13

B

background colors 3-3
BDE Administration utility 5-10
BIOLIFE.DB 3-6
Borland Database Engine
(BDE) 5-8
buttons
events 3-14

C

canvases 3-2
captions
removing 3-11
changing
source files 2-4
child windows 3-2
click events 3-14
client/server development 5-10
code 3-13
editing 2-4
syntax highlighting 2-8, 4-8
code completion 2-7

Index

Code editor 2-4, 2-5
browser 2-5
context-sensitive help 2-15
customizing 4-8
illustrated 2-4
overview 2-4

Code Explorer 2-6

Code Insight 2-7

code templates 2-7

coding
Help while 2-7

Color property 3-3

colors 3-3

COM (Component Object

Model) 5-12

commands 5-4

component packages 4-10

Component palette 3-3 to 3-4
adding components 4-10
customizing 4-8
overview 2-2

component templates 4-11

components 2-2, 3-2, 3-3, 5-3,

5-4
adding 3-3, 4-10
building custom 5-15
customizing 2-3
defined 2-2
overview 2-2
predefined 3-3

connections 2-11

context menus 2-14, 3-2

context-sensitive help 2-15

controls 3-2

CORBA applications 5-12

creating
applications 3-1

customizing
Code editor 4-8
Component palette 4-8
components 2-3
Delphi 4-1
online Help 4-11
project options 4-5
tool preferences 4-7

D

Data Dictionary 5-9
data grids 3-5, 3-6
data sources 3-5

data-aware controls 3-6
database applications 5-8
Database Desktop (DBD) 5-9
Database Explorer 2-11, 5-8
databases 2-11, 3-5
accessing 2-11, 3-5
architecture 5-10
configuring 5-10
getting values 3-5
sample 3-6
saving data 3-14
DataSource component 3-5
DBGrid component 3-5, 3-6
debugging 2-9
defaults
changing project 4-5
event handler 3-14
package containers 4-10
DEFPRO]J.DOF 4-6
deleting
captions 3-11
Delphi
customizing 4-1
development
environment 2-1
documentation 1-2
overview 1-1
product versions 5-2
programming
environment 5-1
starting 2-1
technical support 1-4
toolbars 2-14
deploying applications 5-14
designing applications 3-2, 3-3,
5-2

design-time properties 3-3, 3-13
viewing 3-2
dialog boxes 3-2
context-sensitive help 2-15
displaying
event handlers 2-4
property values 3-2
distributed applications 5-11
docking windows 2-8, 4-3
DPL file 5-7

E

editing 3-13
code 2-4
editor 2-5

Index I-1

ellipse buttons 3-13
environment options 4-7
Environment Options dialog
box 4-8
errors 5-7
event handlers 3-14
default 3-14
viewing 2-4
events 2-4
navigating 2-4
Events page (Object
Inspector) 2-4
exception handling 5-7

F

fields 3-5
File Save dialog box 3-14
files
saving 3-14
folders 3-1
Font editor 3-13
fonts
customizing 3-13
form wizards 4-7
forms 3-2
adding components 2-2
adding objects 3-3 to 3-4
specifying default 4-7

G

grid 3-5

H

Help 2-15
customizing 4-11
list of Help files 1-2

IDE 2-1,5-1

adding components 4-10
initializing

objects 3-3
InstallShield Express 5-14
instantiation

objects 3-4
interfaces 3-2

designing 3-3

international applications 5-14

M

memos
creating 3-12

-2 Quick Start

Menu editor 3-13

menus 3-2

Microsoft Transaction Server
MTS) 5-13

MIDAS 5-10

MTS 5-13

multi-tiered application 5-10

Multi-tiered Distributed
Application Services Suite
(MIDAS) 5-10

N

New Application command 3-1

0

object hierarchy 5-2
Object Inspector 3-2

creating event handlers 3-14

overview 2-3
setting properties 3-3, 3-13
viewing properties 3-2
Object Repository 2-11,4-6
default forms 4-7
Object Request Broker
(ORB) 5-12
objects 2-11, 3-2
adding 3-3to 3-4
initializing 3-3
instantiating 3-4
setting properties 3-3, 3-13
storing as templates 2-11
OCX 5-12
ODBC 5-14
OLE 5-12
OLEnterprise 5-10
OnClick event 3-14
online help 2-15
OpenHelp 4-11
Oracle8 5-8

P

packages 5-7
default container 4-10
installing 4-10
palette pages 3-3
panels
removing captions 3-11
parent windows 3-2
Picture editor 3-13
predefined components 3-3
project files 2-13
Project Manager
overview 2-13

Project Options dialog box 4-5
project templates

specifying default 4-6
projects 2-13, 3-1

defaults 4-6

options 4-5

restoring defaults 4-6
properties

initial values 3-3

setting 3-3, 3-13

viewing 3-2
property editors 3-13

activating 3-13

initializing objects and 3-3
PVCS Version Manager 5-14

R

remote connections 2-11
Remote Data Broker 5-10
remote debugging 2-10
repository 2-11

restoring project defaults 4-6
reusing objects 2-11
right-click menus 2-14
runtime packages 5-7

S

sample database 3-6
SaveDialog component 3-14
saving

files 3-14
setting property values

tutorial 3-3, 3-13
single-tiered application 5-10
source code 2-5

default

event handlers 3-14

source files 3-1

changing 2-4
SQL Explorer 2-11,5-9
SQL Links 5-10
support 1-4

T

templates 2-11
creating component 4-11
specifying default 4-6
text
adding to forms 3-12
controls 3-12
setting fonts 3-13
tool preferences 4-7
tool windows 2-8

toolbars 2-14
tools
organizing 4-1
tooltip expression
evaluation 2-7
type libraries 5-14

U

user interface 2-2, 5-4

\

W

VCL30 5-7
viewing
event handlers 2-4
property values 3-2
VisiBroker 5-12
Visual Component Library
(VCL) 2-2,5-2

Web site
Delphi 1-4
windows
context-sensitive help 2-15
docking 2-8
wizards
COM 5-13
CORBA 5-12
Object Repository 2-11
specifying default 4-7

Index

I-3

I-4 Quick Start

	Main Menu
	Reader Tips
	Quick Start
	Contents
	Tables
	Ch 1: Introduction
	What is Delphi?
	Where to find information
	Online Help
	Printed documentation
	Inprise developer support services
	Inprise Web site

	Manual conventions

	Ch 2: A tour of the environment
	Starting Delphi
	Placing components on a form
	Changing component appearance and behavior
	Navigating among events

	Editing code
	Browsing with the editor
	Navigating within your project
	Navigating within your code
	Getting help while coding

	Organizing the environment
	Debugging applications
	Exploring databases
	Storing objects as templates
	Project management tool
	Handy pop-up menus
	Toolbars
	Getting help

	Ch 3: Your first application–a brief tutorial
	Starting a new application
	Setting property values
	Adding objects to the form
	Accessing a database
	Adding support for a toolbar and a menu
	Adding a menu
	Adding a toolbar
	Displaying an image
	Final touches
	Hooking up an event handler

	Ch 4: Customizing the environment
	Organizing your work area
	Organizing tools
	Organizing menus and toolbars

	Setting project options
	Setting options for all new projects
	Restoring Delphi’s original default settings

	Creating project defaults
	Specifying a default project
	Displaying a default form

	Setting tool preferences
	Customizing the Code editor

	Customizing the Component palette
	Rearranging the Component palette
	Adding components to Delphi
	Installing component packages
	Adding ActiveX controls
	Creating component templates

	Customizing Delphi Help

	Ch 5: Programming with Delphi
	Delphi development environment
	Designing applications
	Using the VCL
	Creating the application user interface
	Using components
	Changing component behavior
	Designing menus

	Developing applications
	Creating Windows GUI applications
	Creating packages and DLLs
	Handling exceptions

	Writing database applications
	Connecting to databases
	Using database tools
	Browsing databases
	Storing data information
	Editing existing database tables
	Configuring databases
	Understanding database application architecture

	Developing distributed applications
	Developing CORBA applications
	Developing distributed applications using COM and MTS
	Creating COM applications with wizards
	Using MTS with Delphi
	Creating and editing type libraries

	Deploying applications
	Building custom components

	Index
	A-E
	F-T
	U-W

